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Abstract
Since the world is in the middle of a race for achieving quantum “supremacy”, every as-
pect related to quantum computing represents a popular research topic. By relying on
applications from statistical physics and strong mathematical machinery, this report de-
scribes our exploration of the capabilities offered by a specialized quantum computer called
quantum annealer. Our goals are to understand the differences between quantum and sim-
ulated annealing, to design numerical methods for implementing both simulated quantum
annealing and simulated thermal annealing using a classical model, and finally to benchmark
this model against the quantum annealer provided by D-Wave Systems. We believe that our
work extends the literature by proposing a more complex numerical scheme than the one
devised by Ma and Dudarev [MD11]. Additionally, we have extended the classical bench-
marking model proposed by Subires et al [Sub+21], but further investigation is required in
order to compare and contrast results.
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1 Introduction

Quantum computing has started to permeate every aspect of computational and applied math-
ematics where classical computers display limitations. Although the hardware implementation
of quantum computers is still work in progress, open-source simulators such as IBM’s Qiskit
allow the user to explore the software functionalities of a quantum computer. Quantum com-
puters are theorised to have the potential to outperform classical computers on a number of
important problems. There is already a collection of well-developed quantum algorithms, such
as the Deutch-Jozsa algorithm, Grover’s search algorithm, Simon’s algorithm, etc., which are
fully understood, but lack any practical application. A remarkable treatment on theoretical
quantum computing can be found in [NC11].

There is a wide class of optimisation problems which are intractable using a classical com-
puter because they fall into the NP-hard set of problems. We will briefly enumerate some of
them in the following subsection. Thus, there has been a strong interest in specialised devices
which perform quantum computing and which could address these challenging problems. Such
devices are called quantum annealers, and the one we will focus on in our work was built in
1999 by the Canadian company D-Wave Systems.

Quantum annealing operates in the spirit of simulated annealing, which we will discuss in
Chapter 1. In order to efficiently solve these difficult optimisation problems, quantum annealers
also leverage the physical properties of quantum systems.

The foundations of quantum annealing will be discussed in Chapter 2, where it is shown
that simulated quantum annealing (SQA) allows for shorter annealing times than simulated
thermal annealing (SA).

The realisation of quantum annealers such as the D-Wave machine has opened up new
potential directions for research. One such area consists of using simulations of the quantum
annealing process as a benchmark for the performance of the annealer, and as a means to
understanding the behaviour of the annealing process. To this end, a model is introduced in
Chapter 3, where Langevin’s equations of motion for multi-spin systems are integrated using a
Hamiltonian and norm-preserving splitting method.

In order to effectively simulate the annealing process, we will delve into the implementation
of the D-Wave device in Chapter 4. Then, in Chapter 5, we will present our numerical results,
where we will make preliminary comparisons to results obtained using the D-Wave device.

1.1 Combinatorial Optimisation

The focus of combinatorial optimisation is on finding the “optimal” object (i.e. an object
that maximises or minimises a particular function) from a finite set of mathematical objects.
Problems of this type arise frequently in real world settings and throughout pure and applied
mathematics, operations research and theoretical computer science. Typically, it is impractical
to apply an exhaustive search, as the number of possible solutions grows rapidly with the “size”
of the input to the problem. The aim of combinatorial optimisation is to find cleverer methods
(i.e. algorithms) for exploring the solution space.

Mathematical optimisation seeks to minimise or maximise a cost function. Without loss of
generality, we can consider only minimisation. Prominent examples of optimisation problems
are the travelling salesman problem (TSP), the graph max-cut problem, Hamiltonian graph
partitioning, or in physics, searching for the ground state of a spin glass. When solving opti-
misation problems one aims to build algorithms which run in polynomial time. In the case of
the TSP, this could be impossible, so heuristics such as the Lin-Kernighan algorithm [LK73]
have been developed to approximate optimal solutions of the TSP . Combinatorial optimisation
problems can be ranked in terms of complexity as follows, from [Joh90]:

• P: The class of decision problems solvable on a deterministic Turing Machine (DTM)
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obeying a polynomial bound on running time in terms of the input size.

• NP: Problems whose solutions can be verified in polynomial time on a non-deterministic
Turing Machine (NDTM) (NP stands for non-deterministic polynomial time).

• NP-Complete: The problem X is NP-complete if there is a polynomial time algorithm
reducing all NP problems to X, and X is itself NP. Since NP complete problems are
reducible to one another in polynomial time, a polynomial algorithm for one can solve all
of the others. Many combinatorial optimisation problems are NP-complete.

• NP-Hard: A problem X, not necessarily NP, is NP-hard if there exists an NP-complete
problem Y for which there is a polynomial-time algorithmic reduction from Y to X. The
full class of NP-hard problems are only solvable in polynomial time if P = NP.

Heuristics such as divide-and-conquer and iterative improvement are developed for approxi-
mately solving the problem, but we want to probe the average performance relative to comput-
ing requirements. For very large problems, this is linked to statistical mechanics which studies
the statistical behaviour of systems in thermal equilibrium.

1.2 Statistical Mechanics

One of the most famous models in statistical mechanics is the Ising model whose original purpose
was to study ferromagnetism. An extensive introduction to this model and its properties can be
found in Cipra’s paper [Cip87]. To understand the model, one needs to imagine a lattice such
that at each vertex there is an atom of magnetic material. Every such atom has an intrinsic
magnetic moment, called spin, and which could point either “up” or “down”. Mathematically,
we invoke the convention that a value of +1 is associated to an upward pointing spin, and a
value of −1 is assigned to a downward pointing spin. What we have so far is a system of spins
in a solid, and we are interested in studying its energy and dynamics. This could be done by
considering the Hamiltonian of the system. For each configuration of spins (s1, ..., sN ), it can
be written as:

H(s1, ..., sN ) = −1

2

 ∑
(i,j)∈I

Jijsisj

−
N∑
i=1

hsi, si ∈ {−1,+1}. (1.1)

The Ising model assumes that only spins whose corresponding vertices, usually the integer
lattice, are connected by an edge can interact. Thus, long-range interactions are neglected,
which is a strong assumption, but renders the system easier to analyse. For a ferromagnet,
Jij > 0, which means that spins si, sj are forced to align and point in the same direction, i.e.
sisj = 1. For an anti-ferromagnet, Jij < 0, so spins point in opposite directions, i.e. sisj = −1.
The extra parameter h represents an external magnetic field which guides spins to point in the
direction dictated by the field. The Ising model is the discrete version of a more general model
of ferromagnetism, called the Heisenberg model. The latter lies at the heart of our subsequent
discussion.

One of the main difficulties in statistical mechanics is to calculate the partition function of
a system:

Z(T ) =
∑
ω

e−U({r1,r2,...,rN})/kBT , (1.2)

where U({r1, r2, . . . , rN}) is the potential energy of the configuration of the system, kB is the
Boltzmann constant, and T is the temperature. Each configuration ω is defined by the set of
atomic positions {ri}, so summing over ω boils down to summing over all possible configurations
of the system.
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Barahona [Bar82] studies the problem of calculating the partition function and finding the
ground state of the energy for Ising spin glass models. In particular, he shows that, in the case
of two-dimensional finite lattices, these problems are polynomially solvable with respect to the
size of the lattice. However, they become NP-Hard for the three-dimensional case, which is
exactly the Heisenberg model. Its Hamiltonian is given by:

H(S1, ..., SN ) = −1

2

 ∑
(i,j)∈I

JijSi · Sj

−
N∑
i=1

h · Si, Si ∈ R3, ∥Si∥ = 1, (1.3)

where h is an external magnetic field. A coupling Jij chosen randomly from {−1,+1} is assigned
to each pair (i, j) connected by an edge. The Heisenberg model is the continuous 3-dimensional
version of the Ising model.

What we have been discussing so far are classical models which could be seen from a
quantum-mechanical perspective as well. The Stern-Gerlach experiment [GS22] suggests that,
besides the classical idea of a spin which we have already described, the electron has an extra
degree of freedom which allows it to “self-rotate”. The mathematical apparatus for this discov-
ery was developed by Pauli (1927). Using the formalism of quantum mechanics, the spin state
of an electron can be represented using the two-dimensional basis

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
. (1.4)

Formally, we aim to define an operator Ŝz which acts on the {|0⟩ , |1⟩} basis, as follows:

Ŝz |0⟩ =
ℏ
2
|0⟩ , Ŝz |1⟩ = −ℏ

2
|1⟩ . (1.5)

These eigenvalue equations can be translated into the language of the classical model by observ-
ing that states |0⟩ and |1⟩ correspond to upward and downward pointing spins in the z-direction,
respectively.

The general form of a state can be described as:

|Ψ⟩ = α |0⟩+ β |1⟩ , (1.6)

with α, β ∈ C. Hence, showing the action of the operator Ŝz on the state |Ψ⟩ can be done by
representing Ŝz as the 2× 2 matrix:

Ŝz =
ℏ
2

(
1 0
0 −1

)
. (1.7)

One can easily check that this form indeed acts on the {|0⟩ , |1⟩} basis, as required. The
expressions for the Ŝx and Ŝy operators are:

Ŝx =
ℏ
2

(
0 1
1 0

)
, Ŝy =

ℏ
2

(
0 −i
i 0

)
. (1.8)

Then, one can finally define the Pauli matrices σα by:

Ŝα =
ℏ
2
σα, α ∈ {x, y, z}. (1.9)

Returning to our previous discussion, we can state the Hamiltonian of the Quantum Ising model
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as:

Ĥ = −1

2

 ∑
(i,j)∈I

Jijσ
z
i σ

z
j

−
N∑
i=1

hσz
i . (1.10)

1.3 A type of optimisation problem in statistical physics

In ideal systems, all particles are alike and the ground state is a unique configuration depending
on a single parameter. An optimisation problem typically has distinct changeable elements and
perhaps multiple control parameters. Systems where not all atoms are alike may simultaneously
contain the presence of interactions favouring different and incompatible kinds of ordering.
For example, spin glasses display competition between ferromagnetic and anti-ferromagnetic
ordering. Consider an Ising-type Hamiltonian where the couplings Jij are sampled from the
Gaussian distribution. This corresponds to the Sherrington-Kirkpatrick (SK) model [SK75] of
spin glasses with long-range interactions, i.e. all spins on the lattice interact:

HJ = −
∑
⟨i,j⟩

Jijsisj − h
∑
i

si, (1.11)

where si is the spin at site i, h is the external field, Jij are i.i.d. Gaussian random variables. We
emphasise that the subscript J denotes a particular realisation of the couplings. Note that Jij
can be greater, less than or equal to zero and, once chosen, are fixed for all time. In this case,
ferromagnetic and anti-ferromagnetic interactions compete with each other, which leads to a
phenomenon called frustration: no spin configuration can simultaneously satisfy all couplings.
As the name suggests, spin glasses have the same relationship to magnets as glass does to
crystals, and they exhibit many degenerate ground states. Another famous spin glass model is
Edwards-Anderson model [EA75] with nearest-neighbour interactions and no external field. An
interesting connection between the travelling salesman problem and the SK model was found
in [KT85]. Finding the ground state of the SK model is also known to be an NP-hard problem.

1.4 The QUBO and Ising formulations

Having discussed combinatorial optimisation and statistical mechanics, we now unify these
two areas and show how, in the paradigm of quantum computing, they are used interchange-
ably. Quadratic Unconstrained Binary Optimisation (QUBO) problems are a class of NP-hard
problems which can be treated using the infrastructure offered by D-Wave. Examples of com-
binatorial optimisation problems which can be translated into the QUBO formulation are the
Maximum-cut and Graph partition problem. For a survey on QUBOs, one can consult [Koc+14].

A QUBO problem is, in general, formulated in terms of a symmetric matrix Q with real-
valued entries Qij , and, more concretely, it is defined by the binary minimisation problem:

min
xi∈{0,1}

∑
i≤j

xiQijxj . (1.12)

The mapping xi =
1
2(si + 1) sends xi = 0 to si = −1 and xi = 1 to si = 1. Hence, making this

substitution in the minimisation problem (1.12) we obtain an equivalent minimisation problem:

min
si∈{−1,1}

−1

2

∑
i ̸=j

Jijsisj −
∑
i

hisi + C, (1.13)

where Jij = −1
2Qij , for i ̸= j, Jii = 0, hi = −1

2

∑
j Qij , and the constant C = 1

4

∑
i≤j Qij . This

latter formulation is exactly the problem of finding the ground state of the Ising Hamiltonian
up to a constant. Once the ground state is calculated, it is just shifted by the value of C, and
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thus the QUBO problem is also solved. More discussion about the QUBO-Ising duality can be
found in [VV21], [Wil+21].

1.5 The need for a continuous model

Suppose we are interested in the properties of materials in their lowest energy state. As tem-
perature goes down to zero, the distribution collapses into this ground state, but, in practice,
low temperature is not sufficient for finding the ground state of a material. This must be done
by annealing, for example by melting the substance, then lowering the temperature slowly,
spending a long time near the freezing point. If the cooling is not done carefully, then it will
get out of equilibrium and, either defects will develop, or the substance will form a glass which
has no crystalline order and only meta-stable, locally optimal structures. To study the prop-
erties of this phase transition and the formation of topological deformities, it is necessary to
describe the annealing dynamics in continuous time. This is the motivation for the Spin Vector
Langevin (SVL) model, which is used in [Sub+21] to predict the formation of topological defects
or “kinks” during the phase transition in a quantum spin system.

Our work is mainly motivated by the use of the SVL model as a source for benchmarking
the dynamics of a quantum annealer. This model relies on the following simplification: each
spin operator is assigned to an angle in plane such that σz

i → sin θi and σx
i → cos θi. Therefore,

the configuration of the classical system is not defined by the spins (S1, S2, ..., SN ), rather by
the set of their corresponding continuous angles (θ1, θ2, ..., θN ). Then, under this assumption,
the SVL model evolves under Langevin dynamics.

We aim to extend this two-dimensional model and benchmark the dynamics of the quan-
tum annealer using the Heisenberg model which is three-dimensional, and which also exhibits
rotational symmetry by restricting the spin-length to the unit sphere. Also, in order to perform
simulations of the dynamics of this system, we use the the Langevin-type equation introduced
by Ma and Dudarev [MD11]. This particular equation is the Landau-Lifschitz (LL) equation
augmented by an additional stochastic term which adds the Langevin dynamics behaviour to
the system. The exact expressions of the Heisenberg Hamiltonian and the equation we are
treating are in Sections 3.1 and 3.2, respectively. It is worth mentioning that the LL equation is
not analytically integrable, so we build an integrator based on splitting methods, following the
methodology described in [LM16]. We also believe that our integrator extends the one proposed
by Ma and Dudarev in [MD11]. The details of this construction are described in Section 3.3.

One important difficulty which became apparent due to time constraints is the investigation
of the statistics of topological defects. This limitation of our work will be discussed in Chapter
6.
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2 Foundations of Quantum and Simulated Annealing

2.1 The principles of Quantum Annealing

We see thermodynamics in action every day, water heats up, turns to steam, then cools and
forms puddles. In principal, quantum annealing is a thermodynamics process and all that
separates it from the everyday occurrences we observe is that it takes place at the scale of
quantum particles, where classical laws break down and the specific trajectory of a particle is
unknowable due to the Heisenberg uncertainty principle. The laws of thermodynamics state
that closed systems conserve their energy, entropy increases and the minimum possible energy
of a system occurs at absolute zero. By taking advantage of the links made between statistical
mechanics and optimisation problems in 1.1, and considering the quantum analog of the laws of
thermodynamics, quantum annealing seeks to use the peculiar properties of quantum systems
to efficiently solve optimisation and sampling problems.

At the heart of quantum annealing one finds quantum bits, known as qubits. These are
the quantum version of classical bits and exhibit properties from quantum physics. Inside the
quantum computer, qubits are devised as circulating currents with a corresponding magnetic
field which allows the information to flow. The currents have a predefined orientation, which is
clockwise for state |0⟩ and anti-clockwise for state |1⟩. The distinguishing feature of qubits is
that, unlike classical bits, their current state can be a linear combination of the states |0⟩ and
|1⟩, a principle known as superposition [The+17]:

|ϕ⟩ = α |0⟩+ β |1⟩ . (2.1)

Here α, β ∈ C describe how much the classical states |0⟩ and |1⟩ contribute to the superposed
state of the qubit |ϕ⟩.

A key observation regarding Eq. (2.1) is that a qubit’s superposed nature is not expressed
through |ϕ⟩ being intermediate between |0⟩ and |1⟩. In other words, we do not know at any point
the amplitudes α and β. Rather, as stated by Dirac [Dir47], the superposed state is expressed
through the probability of |ϕ⟩ being intermediate between the corresponding probabilities of |0⟩
and |1⟩. That is, when we measure a qubit, we retrieve the probabilities |α|2 and |β|2 of the
states |0⟩ and |1⟩, respectively.

The process of quantum annealing for one qubit is shown in Figure 2.1. It starts with the
qubit in the lowest-energy superposed state where there is only one minimum. As the system
anneals, the potential barrier is lifted and the qubit has probability 1

2 of ending in either state
|0⟩ or state |1⟩ . However, by applying an external magnetic field, one could interfere with the
potential barrier, thus creating a lower valley where the qubit ends up with higher probability.
For example, in Figure 2.1, the lowest-energy state achieved by the qubit is |1⟩ . The external
magnetic field which makes the qubit minimise its energy is a control parameter chosen by the
user of the quantum machine.

Of course, systems in general contain at least two qubits which can interact with each other.
This interaction is called coupling and it is managed by a device built into the quantum machine

Figure 2.1: Energy diagram of the quantum annealing process [D-Wg]
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Figure 2.2: Energy diagram for two entangled qubits [D-Wg]

called a coupler [D-Wg]. Essentially, the coupler measures the coupling strength between qubits
and its value is inserted into the quantum machine by the user. If the coupling is positive, the
qubits will tend to end up in the same state (ferromagnetic), whereas if the coupling is negative,
they will tend to opposite states (anti-ferromagnetic). Coupling is based on another phenomenon
from quantum physics called entanglement [Dir47]. Roughly speaking, two entangled qubits can
be considered as an individual object with four possible states: |00⟩ , |01⟩ , |10⟩ , |11⟩ . Thus, n
entangled qubits result in 2n possible states, which indicates that systems could become rapidly
complex for a reasonably small number of qubits. For example, Figure 2.2 shows the energy
diagram for a system of two entangled qubits with |11⟩ being the lowest-energy state found by
the annealer.

2.2 The probabilistic framework for Simulated Annealing

Simulated annealing was introduced by Kirkpatrick, Gelatt and Vecchi [KGV83] in 1983 as a
method to solve optimisation problems for which the cost function to be minimised exhibits
several local minima. The probabilistic framework for simulated annealing was proposed in
a highly cited article of Bertsimas and Tsitsiklis [BT93] where they restrict to discrete-time
Markov chains for which the cost function covers only a finite number of states.

Before we describe the method, it is essential to fix some notation. Let us define the cost
function which we aim to minimise by c : S → R, where S is the set of states the system goes
through. The proper subset Smin ⊂ S is the set of all minima of c. The decreasing function
T : N → (0,∞) is called the annealing schedule and T (t) is the temperature at time t ∈ N. For
every state i ∈ S, we can assign a transition probability qij ∈ [0, 1], where j ∈ N(i) := {j ∈ S :
j ̸= i is a neighbour of i}. These probabilities guarantee that we could visit every state of the
Markov chain. Furthermore, by the axioms of probability, we require that

∑
j∈N(i) qij = 1. It

is also reasonable to assume that j ∈ N(i) if and only if i ∈ N(j). Now, the Markov chain is
defined as {x(t) : t ∈ N}, and it starts from an initial state x(0) ∈ S. In general, moving from
state x(t) to the next state x(t+1) is described by Algorithm 1. If we are at state x(t) = i, then
we can arbitrarily choose a neighbour state j ∈ N(i) according to the transition probability qij .

The Metropolis algorithm introduced by Metropolis et al [Met+53] aims to sample elements
from a distribution, say, ρ by simulating a Markov chain which is known to have ρ as stationary
distribution. One could understand the reasoning behind the simulated annealing algorithm
by making an analogy to the statistical physics context. A problem that has been of great
importance in statistical physics is to sample points from the set S according to the well-known
Gibbs distribution πT given by

πT (i) =
1

ZT
exp

(
−c(i)

T

)
, i ∈ S. (2.2)

7



Algorithm 1 Going from state x(t) to state x(t+ 1)

Require: x(t) = i
if c(j) ≤ c(i) then
x(t+ 1) = j

end if
if c(j) > c(i) then

x(t+ 1) = j with probability exp
(
− c(j)−c(i)

T (t)

)
else
x(t+ 1) = i.

end if

This is done by simulating the irreducible and aperiodic Markov chain {xT (t) : t ∈ N} until
equilibrium is achieved. In this case, we consider the temperature T (t) to be constant and
equal to T. Letting T → 0, one can observe that the samples drawn from the distribution
πT are concentrated in Smin. Returning to the optimisation picture, one can maintain the
temperature T very low and sample points from the distribution πT in order to make sure that
the points sampled lie in Smin with large probability. However, there is a drawback to this
strategy. If T happens to be too low, it will take an exaggerated amount of time for xT to
reach equilibrium. Hence, at the expense of having an additional increase of energy, we start
the process from a sufficiently large temperature T (t) and gradually decrease it according to
the annealing schedule. Thus, one can avoid being trapped in local minima.

2.3 Convergence results

In theory, the discussion above settles the answer to the convergence of x(t) to an element in
the set Smin. The next crucial question one might pose is related to how fast the algorithm
converges. One of the first results in this sense was proved by Geman and Geman [GG84]
(1984) who essentially established a bound on the family of annealing schedules. It is worth
pointing out that if the rate of decrease for T (t) is unreasonably slow, then the algorithm is
impractical. Hence, the optimal schedule proposed by Geman and Geman is T (t) = k/ log t or
anything lower than logarithmic decay. The parameter k depends on the characteristics of the
system and the cost function. Nevertheless, faster schedules, such as linear decrease, might lead
to adequate outcomes in practice. A more general and sharper result regarding convergence
was stated and proven by Hajek [Haj88].

Theorem 2.1 (Hajek (1988), Bertsimas and Tsitsiklis (1993)). Suppose that there exists a
collection of neighbours in S which can be ordered in a path starting from i ∈ S and ending at
some element in Smin such that the largest value of c along the path is equal to c(i)+h. Then we
say that i is connected to Smin at height h. Let k∗ be the smallest height for which i is connected
to Smin. Then the simulated annealing algorithm converges if and only if

lim
t→∞

T (t) = 0 (2.3)

and
∞∑
t=1

exp (−k∗/T (t)) = ∞. (2.4)

Here we emphasise that the necessary and sufficient condition for convergence does not
depend on the explicit form of the schedule, but rather on the parameter k∗. The quantity k∗

captures the difficulty of the system to overcome being trapped in local minima and reach the
set Smin. The condition that T (t) has to convergence to 0 for large t is sensible given the nature
of the algorithm just described.
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We now offer a heuristic argument why the last condition of the previous theorem guarantees
convergence. Consider a local minimum whose “valley” measures height k∗. Then, consider the
infinite sequence of events which say that SA escapes from this local minimum. These events are
clearly independent from each other, and the probability that each event succeeds is (roughly)
exp (−k∗/T (t)) . Then, by the Borel-Cantelli lemma, one could deduce that the escapes happen
infinitely often with almost sure probability.

There are various annealing schedules that one might experiment with in practical applica-
tions, such as linear and quadratic schedules T (t) = T0/(1 + αt), T (t) = T0/(1 + αt2), or even
an exponential one T (t) = T0 exp(−αt), where T0 is the initial temperature. The empirical
parameter α > 0 is set at the beginning of the process and controls the cooling rate of the
system. One is right to expect the exponential decay to be unacceptably fast, even with a
carefully chosen α. However, a faster schedule is desired whenever one cannot access sufficiently
powerful computational resources. There has been some recent progress on trying to mitigate
this difficulties by adapting the cooling rate during the optimisation process. In particular,
Karabin and Stuart [KS20] consider the exponential schedule above, but modify the cooling
rate such that it varies as a function of the instantaneous temperature, α(T (t)). The purpose of
this change is to anneal slowly around regions containing important temperatures and anneal
faster when the system is far from those regions. Therefore, the annealing schedule becomes

T (t) = T0 exp

(
−
∫

α(T (t))dt

)
, (2.5)

where the actual cooling is done the via finite-difference increments

T (t+∆t) = T (t)− α(T )∆t. (2.6)

Even though one can devise schemes for optimising the simulated annealing algorithm, the
advantage of quantum computers hints to a potentially quicker, yet more sophisticated type of
annealing.

2.4 Quantum annealing vs simulated annealing

Recently, there has been an interest in how the principles of quantum physics could improve the
performance of simulated annealing [KN98], [MN08], [Bro+99], [Suz09]. Thus, the concept of
quantum annealing was born. As already mentioned, the main difficulty of simulated annealing
lies in the height of barriers which separate the minima of the cost function. A potential remedy
to this issue is quantum tunneling for which the height of the barrier is irrelevant. One can
potentially accelerate the convergence of simulated annealing by tunnelling directly through the
barriers, without incurring the additional cost of energy to “climb” them. Instead of causing
thermal fluctuations in the system, quantum annealing cleverly introduces a transverse field
Γ into the system and slowly decreases it to induce quantum fluctuations. In the case when
temperature is a variable in the system, it is kept fixed during the annealing process. In order to
illustrate the distinction between the two types of annealing, we rely on the following example
from statistical physics. Suppose one aims to find the ground state (global minimum) of an
Ising model with interactions between all vertices i, j connected by an edge. The Hamiltonian
whose ground state we aim to obtain is given by

HIsing(t) = −1

2

∑
i,j

Jijsisj , si ∈ {−1,+1}. (2.7)

In particular, Jij are couplings such that Jij > 0 denotes ferromagnetic coupling and Jij < 0
denotes anti-ferromagnetic coupling. To introduce the transverse field term Γ, we need to
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consider the quantum version of the Hamiltonian (2.7):

Ĥ(t) = −1

2

∑
i,j

Jijσ
z
i σ

z
j︸ ︷︷ ︸

Quantum Ising Hamiltonian

−Γ(t)
N∑
i=1

σx
i︸ ︷︷ ︸

Tunnelling Hamiltonian

(2.8)

= ĤIsing − Γ(t)

N∑
i=1

σx
i , (2.9)

where σz and σz are the Pauli matrices defined in (1.9). Assuming that Γ = 0, we get that[
σz, Ĥ

]
= 0. Heisenberg’s equation of motion [Che+19] for σz reads

dσz

dt
= −i

[
σz, Ĥ

]
, (2.10)

where ℏ = 1, and therefore σz is conserved with time, and hence, so is Ĥ. However, introducing

the tunnelling Hamiltonian, we force the commutator
[
σz, Ĥ

]
to stay constant and non-zero,

thus inducing quantum fluctuations in the system’s levels of energy.
The transverse field was shown to play an analogous role to temperature in the Hopfield

model by Nishimori and Nonomura in [NN96], so (2.8) mimics the rationale behind the SA
algorithm. We start the quantum annealing with Γ(t) having large magnitude and gradually
decrease it until it vanishes. The initial state of the system is exactly the ground state of
the tunnelling Hamiltonian. Then we lower the transverse field with time. If the change of
the transverse field is conducted slowly enough, the evolution of states is driven adiabatically,
and the system reaches the ground state of the Ising Hamiltonian when the transverse field is
asymptotically zero.

There is, however, a significant downside to the QA algorithm. The dynamics of the process
is governed by the time-dependent Schrödinger’s equation:

i
d

dt
|Ψ(t)⟩ = Ĥ(t) |Ψ(t)⟩ , (2.11)

where Ψ(x, t) is the (eigen)state which needs to be found at the lowest-energy level. If ta is a
sufficiently long annealing time, then one has that Γ(ta) → 0 as ta → ∞, and so

ĤIsing |Ψ(ta)⟩ = Emin |Ψ(ta)⟩ , (2.12)

where Emin is the eigenvalue of the Quantum Ising Hamiltonian. This implies that Emin is
the ground state of our “problem” Hamiltonian HIsing. For small-size systems, one can solve
the time-dependent Schrödinger’s equation using traditional numerical schemes. For instance,
one such scheme is the Fourth Order Runge-Kutta method, which is employed in [Boy20] to
solve Eq. (2.11) for the system described above having 16 spins. However, solving the time-
dependent Schrödinger’s equation (2.11) for large systems can be done efficiently only using
quantum computers.

2.5 Annealing schedules for Quantum Annealing

From now on, we shall remove theˆsymbol from the Hamiltonian Ĥ to distinguish between the
classical and the quantum versions. Instead, whenever the Pauli matrices are involved it should
be assumed we are referring to the quantum Hamiltonian. If we denoteHTF(t) = −Γ(t)

∑N
i=1 σ

x
i ,
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then we can write the total Hamiltonian as:

H = HIsing +HTF(t). (2.13)

One issue that remains to be discussed is to establish conditions under which the QA algorithm
converges. A sufficient condition in this sense is given in the next section. More precisely,
a specifically chosen schedule for decreasing Γ ensures that the annealing runs adiabatically.
Additionally, one could generalise the Hamiltonian above by writing it as a linear homotopy
between a potential term and a kinetic term, as follows:

H(s) = f(s)Hpot + (1− f(s))Hkin, (2.14)

where s = t/ta and the function f is the annealing schedule such that f(0) = 0 and f(1) = 1.
Hence, H(0) = Hkin and H(1) = Hpot, which correspond to the transverse field Hamiltonian
HTF(0), and the Ising Hamiltonian HIsing, respectively.

2.6 Convergence and Computation Complexity

Quantum annealing (QA) was introduced in the sense discussed by Kadowaki and Nishimori
in [KN98]. Related is the idea of quantum adiabatic evolution (QAE), as applied to the 3-
SAT problem by Farhi et al. in [Far+00]. QA and QAE both rely on the quantum adiabatic
theorem, the difference is their treatment in the literature where in QAE the focus is usually
on the computational complexity of a particular problem, whereas QA is studied as a general
algorithm - the quantum analog of thermal annealing. In this section, we discuss results on the
convergence time for this algorithm and see how complexity bounds can be deduced for the most
general class of problems. Our main reference is [NN96], based on the PhD thesis of Morita,
where it is pointed out that polynomial dependence on system size should not be expected in
such a general framework, since the model accounts for the very hardest cases of combinatorial
optimisation problems. It is interesting to note that, in the ideal noise-free setting, QAE has
been proven to be equivalent to the circuit model of quantum computing, see [MLM21].

2.6.1 Quantum Adiabatic theorem

The adiabatic theorem for quantum mechanics [Kat50] states that, although in general the
Schrödinger equation (2.11) has no stationary solution, when a perturbation acts on the system
slowly enough, and when initialised from a stationary state H0, the system will pass through all
of the stationary states corresponding to Ht for all t. Let the ground state of (2.11) be denoted
by |0(t)⟩ and the jth eigenstate which corresponds to the eigenvalue ϵj(t) by |j(t)⟩, so that

H(t)|j(t)⟩ = ϵj(t)|j(t)⟩. (2.15)

Then the adiabaticity condition for the real time Schrödinger equation is:

1

∆j(t)2

∣∣∣∣⟨j(t)|dH(t)

dt
|0(t)⟩

∣∣∣∣ = δ ≪ 1, (2.16)

where ∆j(t) = ϵj(t)− ϵ0(t).

2.6.2 The General form of the Ising Model

Now consider the Ising model in its most general form:

HIsing = −
N∑
i=1

Jiσ
z
i −

N∑
i,j=1

Jijσ
z
i σ

z
j −

N∑
i,j,k=1

Jijkσ
z
i σ

z
jσ

z
k − · · · , (2.17)
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where σx, σy and σz are the Pauli matrices. We can introduce a transverse field HT with time
dependent factor Γ(t) to get

H = HIsing − Γ(t)HT . (2.18)

Here, Γ controls the strength of the transverse field which, in turn, determines the rate of
transition between states. The quantum adiabatic theorem implies that if Γ(t) starts off large
and decreases very slowly, then in the infinite time limit the system will reach the ground state
of (2.17). The condition for adiabaticity of the quantum system depends on the form of the
transverse field. Here we introduce the three forms covered with proofs in [MN08].

2.6.3 Standard Form

First, for the simplest and most commonly studied form of the transverse field:

HT (t) = −
N∑
i=1

σz
i , (2.19)

to ensure convergence to the ground state of (2.17), the time dependence of Γ(t) must be

Γ(t) = a(δt+ c)
−1

2N−1 , (2.20)

where a and c are constants of order O(N0) and t > t0 > 0. This time dependence guarantees
convergence as t −→ ∞. It is important to note that as t0 −→ 0, the coefficient a diverges, so
t0 must indeed be strictly greater than zero.

2.6.4 The Transverse Field with Ferromagnetic Coupling

If a ferromagnetic coupling term is included in the transverse field, that is, if the transverse
field is defined as

HTI(t) = −ΓTI(t)

 N∑
i=1

σx
i +

∑
i,j

σx
i σ

x
j

 , (2.21)

then the above convergence condition can be improved, in the sense that it theoretically de-

creases the annealing time required to a time dependency of Γ(t) ∝ t
−1

(N−1) for the quantum
system HIsing +HTI .

2.6.5 Infinite Range Ferromagnetic Ising Model

If the transverse field is taken with the form:

HMTI = ΓMTI(t)

N∏
i=1

(1− σx
i ), (2.22)

then the annealing time can be further reduced to the schedule

ΓMTI ∝ 2N−2

δt
. (2.23)

2.6.6 Computational Complexity

These convergence results can be used to directly derive very general results about the compu-
tational complexity of combinatorial optimisation problems that can be written in the form of
(2.17). The above schedules do not grow polynomially with the size N of the system. Indeed,
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it can be shown that the time taken for Γ(t)TF to obtain a lower bound ϵ sufficiently close to
the ground state of HIsing is

tTF ≈ 1

δ

(
1

ϵ

)2N−1

. (2.24)

Likewise, for the infinite range ferromagnetic field, the time taken to achieve a close enough
approximation to the ground state of (2.17) is

tMTI ≈ sN−1

δϵ
, (2.25)

which is exponentially dependent on the size of the problem, N . Although the annealing times
grow exponentially with N , they are much faster than the corresponding times required in
simulated thermal annealing, which is what we discuss next in the quantum setting.

2.6.7 Thermal Annealing in Quantum Systems

The convergence condition for thermal SA was derived by [GG84] using the theory of inhomo-
geneous Markov chains, as described in the Quantum Monte Carlo context. The relation of
annealing time to system size was derived as:

T (t) ∝ N

log(αt+ 1)
. (2.26)

Any classical, finite-dimensional spin model on a lattice can be associated to a quantum
model, defined on the same lattice. This can be done by mapping every classical state si to
the Pauli z-operator σz

i . This maps the classical Ising model HClassical =
∑N

i,j=1 Jijsisj to the

quantum Ising model HQuantum =
∑N

i,j=1 Jijσ
z
i σ

z
j .

In this way, we can obtain an expression of classical thermal expectation value in terms of a
quantum ground state expectation value. If we consider the classical Hamiltonian corresponding
to (2.17) via the above mapping, then the thermal expectation value of the classical physical
quantity Q(σz

i ) is:

⟨Q⟩T =
1

Z(T )

∑
S

e−βHIsingQ({si}). (2.27)

Above, the sum is taken over S, i.e. all the configurations of the spin system, and {si} = {si :
i = 1, ..., N}.

The thermal expectation value above is equal to the expectation value of Q by the quantum
wave function

|Ψ(T )⟩ = e−
βH
2

∑
S

|{si}⟩, (2.28)

where |{si}⟩ is the basis state diagonalising each σz
i as si, and the sum runs over all possible

such assignments. Now, define Hj by the sum of terms in the Hamiltonian (2.17), that is:

Hj = −Jjσ
z
j −

∑
k

Jjkσ
z
jσ

z
k −

∑
kl

Jjklσ
z
jσ

z
kσ

z
l − · · · . (2.29)

Then, if we take p = maxi{Hi} and T > 0, the wave function (2.28) is the ground-state of the
following Hamiltonian:

Hq(T ) = −e−βp
∑
j

Hj
q (T ) = −e−βp

∑
j

(σj
x − eβHj ). (2.30)

The adiabaticity condition applied to the quantum system (2.30) leads to the following condition
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for the convergence of simulated thermal annealing:

T (t) =
pN

log(αt+ 1)
, (2.31)

where α is exponentially decreasing in N . This reproduces the Geman-Geman result for the
convergence of simulated annealing.

2.6.8 Comparison to Quantum Adiabatic Evolution

In Quantum Adiabatic Evolution, a system of bits is encoded with a set of clauses C = {Ci : i =
1, ...,M}. Each clause is true or false depending on the state of some subset of the bits. Then
the problem Hamiltonian is written as:

Hp(t) =
∑
i

HCi , (2.32)

where each HCi depends only on the clause Ci and acts only on the bits determining the truth
of that clause.

We can cast this problem as an energy minimisation problem as they do in [Far+00], and it
is possible to show that this maps to the general Ising Hamiltonian (2.17). This approach fits
into the framework we are discussing, but, since here we mention the most pessimistic bounds
(due to the generality of the results), it is instructive to study specific computationally hard
problems to find possibilities for a quantum advantage.

Mathematical analysis of QA focuses generally on convergence conditions, as we do here,
while studies of QAE focus on computational complexity of a specific problem in finite time
frames. These two topics fit into the same framework, utilising the adiabatic theorem as the
fundamental tool, but approach the problem from different angles. It was shown in the discussion
above that the adiabaticity condition leads directly to the convergence condition in the infinite
time limit, both for quantum annealing with the transverse field and thermal annealing in the
quantum setting, thus linking SA, QA and QAE.

2.7 Numerical Methods For Simulated Quantum Annealing

2.7.1 Quantum Monte Carlo Evolution

Simulated Quantum annealing with Schrödinger dynamics is not practical as it involves numer-
ically solving the quantum many-body problem. Normally, Monte-Carlo methods are used as a
stochastic approximation to the dynamics of quantum systems. In [Shi+14], Seung Woo Shin
et al. use the Metropolis algorithm to perform simulated annealing on two-dimensional vectors,
and it is shown that this model for simulated quantum annealing correlates better with the
D-Wave output than the standard Metropolis algorithm described in section 2.2. Later, contin-
uous models were proposed, for example in [Sub+21] for quantum annealing benchmarking, and
in [MD11] for Langevin dynamics of spin systems. Such a model will be the topic of Chapters
3 and 5, but, to end this chapter, we briefly discuss the methods introduced in [MN08], where
it is shown that the convergence condition for the Monte Carlo Evolution is nearly the same as
the one in the case of the transverse field term when considering the Schrödinger dynamics.

2.7.2 Path-Integral Monte Carlo

The path integral Monte Carlo uses the path integral, see (2.33), to obtain a classical system to
which the algorithm is applied. As discussed in 2.4, the addition of a transverse field introduces
quantum fluctuations which play the role of temperature in SA and the ground state search is
carried out by decreasing the energy of that field. The path integral method [Son+97] maps

14



a d−dimensional quantum Ising system to a (d + 1)−dimensional classical system which can
be simulated on a classical computer. The Suzuki-Trotter formula is used to decompose the
Hamiltonian and obtain the partition function of the classical system, hence the additional
dimension is called the Trotter dimension. In a general sense this method can be used to obtain
the expression:

Z(t) =
∑
x∈S

exp

(
−F0(x)

T0
− F1(x)

T1(t)

)
. (2.33)

In this partition function, F0 is the cost function of a combinatorial optimisation problem we
wish to solve and for which S is the set of all possible configurations. The term F1 is linked to
the kinetic energy and is in the form of one of the transverse field terms in Section 2.6. The
quantum fluctuations are tuned according to the annealing schedule, such that T1 increases with
time, while T0 is chosen to be sufficiently small.

The partition function is the normalisation parameter in the Boltzmann distribution, which
is the equilibrium distribution for a fixed T1. With that in mind, we can construct a Monte
Carlo scheme with acceptance probability A as follows:

A(y, x; t) = g

(
q(y; t)

q(x; t)

)
, (2.34)

q(x; t) =
1

Z(t)
exp

(
−F0(x)

T0
− F1(x)

T1(t)

)
. (2.35)

It can be shown that path integral Monte-Carlo QA is strongly ergodic. Define the set of local
maximum states of F1 as:

Sm = {x|x ∈ S, ∀y ∈ Sx, F1(y) ≤ F1(x)}. (2.36)

Define a metric d(x, y) on S as the minimum number of steps needed to transition from x to y.
Then:

R = min
(x,y)

{
max
x

{d(y, x) | y ∈ S}
∣∣ x ∈ S \ Sm

}
(2.37)

is the minimum of the maximal distances between two states in S\Sm. That is, for a state x,
find the farthest other state in S\Sm under the metric d, then take the minimum over all such
pairs. Finally, in a given step, let L0 and L1 denote the largest possible change in F0 and F1,
respectively. That is, let:

L0 = max
{
|F0(x)− F0(y)|

∣∣P (y, x) > 0, x, y ∈ S
}

(2.38)

L1 = max
{
|F1(x)− F1(y)|

∣∣P (y, x) > 0, x, y ∈ S
}
. (2.39)

Then the ergodicity can be stated as in the following theorem:

Theorem 2.2 (Morita and Nishimori(2008) [MN08]). The inhomogeneous Markov chain gen-
erated by (2.34) is strongly ergodic and converges to the equilibrium state corresponding to the
first term of the right-hand side of (2.35), if

T1(t) ≥
RL1

log(t+ 2)
. (2.40)

It is possible to generalise the acceptance probability (2.34), but this is not proven to be
strongly ergodic. Another Monte Carlo scheme for the Schrödinger equation in imaginary time
is introduced in [MN08] using Green’s Function to calculate the partition function, but it is
exceptionally complicated. Indeed, while Monte Carlo schemes have proven effective in simu-
lating the behaviour of Hamiltonian systems, it is difficult to relate the time-step to real-time
evolution. As discussed in Section 1.5, this is particularly important in studying phase transi-
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tions. It is with this in mind that the stochastic Landau-Lifschitz (LL) equation is introduced
as a candidate model for the time evolution of annealing dynamics. The LL equation is a dif-
ferential equation describing the procession of spins in a magnetic material. It was introduced
by Landau and Lifschitz in [LL92]. The addition of the stochastic term produces Langevin’s
equation for the dynamics of a spin system. In [MD11], Ma and Dudarev integrate this model
with a stochastic term to numerically analyse the relaxation dynamics of a spin ensemble as
it evolves towards the Gibbs distribution. In the next section, we introduce a similar scheme
with a different splitting, a modified version of the solution to the stochastic component and an
annealing parameter to simulate the annealing dynamics of a quantum computer.
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3 The implementation of SA for the Heisenberg system

3.1 The Heisenberg model

For a system of correlated spins in the presence of an external field and where we consider the
interactions between individual components of a single spin, we have the following Hamiltonian:

H(S1, ..., SN ) = −1

2

N∑
i=1

Si ·DSi −
1

2

 ∑
(i,j)∈I

JijSi · Sj

−
N∑
i=1

hi · Si. (3.1)

Here, the diagonal matrix D = diag(d1, d2, d3) ∈ R3×3 accounts for anisotropy, a phenomenon
explained in the context of the Heisenberg model in e.g. [Sel+09]. Additionally, we let
|d1| ≤ |d2| ≤ |d3|, as in [FHL97]. Moreover, the second term in the definition above accounts
for correlations between pairs (i, j) which are connected by an edge. Here, the constants Jij
represent the exchange coupling, so that Jij > 0 gives ferromagnetic and Jij < 0 gives anti-

ferromagnetic behaviour of the system of spins. Finally, hi =
(
hxi , hyi , hzi

)T ∈ R3 denotes an
external magnetic field applied to the spin Si.

The Hamiltonian (3.1) is usually referred to in the literature as the anisotropic (anti)-
/ferromagnetic Heisenberg Hamiltonian, see e.g. [AL04]. Our choice for this particular type of
Hamiltonian is guided by a number of papers where it was treated in connection to numerically
solving the Landau-Lifschitz (LL) equation, see [AL04], [FHL97]. We keep the customary
terminology from the papers we have studied and, as such, for fixed i = 1, 2, ..., N, we take a

spin Si =
(
Sx
i , Sy

i , Sz
i

)T ∈ R3 such that ∥Si∥ = 1, i.e. it lies on the surface of the unit sphere.
For N = 1, we disregard the coupling term, and the Hamiltonian (3.1) reduces to the

following single-spin Hamiltonian:

H(S) = −1

2
S ·DS − h · S. (3.2)

For N > 1, we neglect the anisotropy term and consider spins on the vertices of a weighted
graph G = (S, I), where S = (S1, S2, . . . , SN ), I = {(i, j) : i ∼ j} and Jij is the weight
associated with edge (i, j), so that the Hamiltonian (3.1) becomes:

H(S1, ..., SN ) = −1

2

 ∑
(i,j)∈I

JijSi · Sj

−
N∑
i=1

hi · Si. (3.3)

3.2 Langevin Dynamics of Spin System

The Langevin equation for the motion of a single spin Si reads:

dSi = Si ×∇SiHdt︸ ︷︷ ︸
Conservative dynamics

+ γSi × (Si ×∇SiH) dt︸ ︷︷ ︸
Damping Term

+
√
ηSi × dWi︸ ︷︷ ︸
Wiener noise

. (3.4)

This is a stochastic differential equation (SDE) which consists of three individual parts that we
discuss separately.

Firstly, the conservative motion of the spin is given by dSi = Si × ∇SiHdt, which simply
describes the precession of the spin around an applied magnetic field, where the orientation of
the spin is induced by the magnetic field.

Secondly, the damping term forces the spin into alignment with the magnetic field. A dif-
ferent damping parameter was derived phenomenologically by Gilbert in [Gil04] to make the
equation more consistent with other theories and take large damping into account. The Gilbert
damping term has identical γ, but introduces an additional parameter in front of the conser-
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Figure 3.1: (a) Conservative spin motion (b) Spin motion affected by damping [Lak11].

vative term γ∗ = γ(1 + α2), which proportionately increases the rate of precession with the
experimentally derived parameter α. In [Gil04], the value α = 0.5 is mentioned for a ferromag-
netic material. All our simulations are performed with the original Landau-Lifschitz damping.
This behaviour is illustrated in Figure 3.1.

Hence, only considering these first two terms, we can write the equation of motion for one
individual spin as:

Ṡi = Si ×∇SiH+ γSi × (Si ×∇SiH) , (3.5)

which is the LL equation that was introduced as a model for the magnetisation of spins in a
continuous setting [Lak11].

Besides dissipation, the dynamics of magnetisation also has to consider thermal fluctuation
which influences the direction of the particle introduced in a thermal bath. A consequence
of the theory of Brownian motion shows that a particle exchanges energy with its thermal
bath, which causes the particle to deviate from its thermal equilibrium [Ell+15]. This idea was
proposed by Brown [Bro63] and consists of randomness added to the LL equation through the
term

√
ηSi × dWi. Here dWi is a Wiener process induced by the three-dimensional Gaussian

white noise vector Wi =
(
W x

i , W y
i , W z

i

)T ∈ R3 defined by:

⟨Wi⟩ = 0, (3.6)

and
⟨Wα

i (t),W
β
j (t

′)⟩ = 2ηδijδαβδ(t− t′), (3.7)

where α, β indicate the Cartesian coordinates of the vector and i, j label two arbitrarily chosen
spins. If we let T denote the temperature of the thermal bath, we can write the fluctuation-
dissipation relation [MD11] which relates γ, T and η. That is,

η = γℏkBT, (3.8)

where ℏ and kB are Planck’s and Boltzmann’s constants, respectively. The fluctuation-dissipation
relation captures the intuitive notion that friction induces thermal fluctuations caused by the
production of heat.

A system of N spins leads to a system of N coupled equations of the form (3.4) that must
be solved simultaneously. The solutions of these equations for the Hamiltonian (3.3) result in
the trajectories for a systems of correlated spins in the presence of an external field. By solving
the system, we obtain a continuous time classical model for the dynamics of a spin system. We
can introduce an annealing schedule into the model to investigate the dynamics of a quantum
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annealer. We expect that if the field is perturbed slowly enough, as expressed in the adiabatic
theorem in 2.6.1, then the stationary distribution of the Langevin equation will correspond
to the ground state of the Hamiltonian, see Figure 3.2. Thus, we proceed to describing our
approach to solving Eq. (3.4) for the Hamiltonians (3.2), and (3.3) - namely, for the single-spin
and the system-of-spins cases.

Figure 3.2: Typical spin configurations in the ordered state of H : (a) The paramagnetic state
(mixture of ferromagnetic and antiferromagnetic coupling terms), (b) The ferromagnetic state
(J > 0), and (c) The antiferromagnetic state (J < 0), [KT15].

3.3 Splitting methods

In this section, we motivate the use of splitting methods over classical numerical methods, then
briefly explain how they can be used both generally and in the current context, and finally
illustrate how we apply them to obtain an approximate solution to Eq. (3.4).

3.3.1 Motivation

In physical applications, preserving one or more of the “geometric” properties of the governing
equation of motion is of crucial importance. Examples of such properties include preservation
of energy, momentum, phase space volume, time-reversal symmetry, symplectic structure and
dissipation. To achieve this, an individual class of numerical methods was developed, namely
geometric integrators, many of them tailored to problems analogous in nature to the one con-
sidered in this report (see, for example, [FHL97; AL04; TKL04]).

To begin with, we illustrate the advantage of the above integrators over non-geometric
numerical methods. Similar to work carried out by Leimkuhler and Matthews in [LM16], we
consider as an example the one-dimensional harmonic oscillator, governed by the following
system of ordinary differential equations (ODEs):{

ṗ = −q

q̇ = p,
(3.9)

where p, q : R → R. Further, the energy of the harmonic oscillator is described by the following
autonomous Hamiltonian:

H =
p2 + q2

2
, (3.10)

which is conserved along exact trajectories. Taking a set of initial conditions which form a
circle of radius 0.2 and centered at (p, q) = (1, 0), we can apply both non-structure-preserving
numerical methods, such as explicit and implicit Euler [But16], as well as geometric integrators,
such as symplectic and centered symplectic Euler [FQ87], to simulate a long-time evolution.
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In this framework, Figure 3.3a shows the evolution of the disc delimited by the initial
conditions computed using explicit and implicit Euler. Clearly, the area of the disc is not
preserved over time. In particular, the increase created by explicit Euler can be associated
with a numerical production of energy, whereas the reduction caused by implicit Euler can be
interpreted as a numerical dissipation of energy. Therefore, these methods do not preserve an
underlying property of the system, as they modify the area delimited by the initial conditions.

On the other hand, Figure 3.3b illustrates the solution of the system (3.9) computed using
the symplectic and centered symplectic Euler schemes, starting from the same initial conditions
as in the previous simulation. Thus, we notice that even if the disc is deformed by the former
method, the area delimited by the circle is still invariant. Moreover, using the latter approach,
the shape is unmodified and the area is preserved.

Hence, the harmonic oscillator is an example which motivates the use of geometric integrators
for numerically solving differential equations which exhibit intrinsic geometric properties.

3.3.2 Some geometric properties of the LLG equation

Having motivated the use of geometric integrators, we now explore some of the underlying
geometric properties of Eq. (3.4).

To begin with, one of the essential features that an integrator should preserve is the norm
of the spin, namely ∥Si∥ = 1, i = 1, . . . , N , where N is the number of spins in the system.

Secondly, important, but not essential, is the Poisson structure of the deterministic part
of Eq. (3.4), specifically of Eq. (3.5). In fact, this property is not always preserved in our
integrators.

Finally, let us consider the stochastic part of the Eq. (3.4) for a single spin, in other words:

dS =
√
ηS × dW. (3.11)

To rewrite the RHS of this equation, note that for two vectors a =
(
a1, a2, a3

)T ∈ R3 and

(a) Evolution of disc determined by explicit Euler (left) and implicit Euler (right)

(b) Evolution of disc given by symplectic Euler (left) and centered symplectic Euler (right)

Figure 3.3: Comparison of geometric and non-geometric integrators [RHC18].
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b =
(
b1, b2, b3

)T ∈ R3, their cross product can be written as:

a× b =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

b1
b2
b3

 = −skew(a)b, (3.12)

where we have defined:

skew(a) :=

 0 a3 −a2
−a3 0 a1
a2 −a1 0

 . (3.13)

Since the cross product is anti-commutative, i.e. a × b = −b × a, Eq. (3.11) can be rewritten
as:

dS =
√
ηS × dW = −√

ηdW × S =
√
η skew(dW )S, (3.14)

where the last equality stems from the linearity of the skew-symmetric operator.
Heuristically, we can think of Eq. (3.14) as a SDE at the so(n) Lie algebra level because

of the skew(dW (t)) term. To motivate why this is the case, let us now consider the special
orthogonal group SO(n) defined by:

SO(n) =
{
A ∈ Rn×n

∣∣AAT = ATA = In, det(A) = 1
}
, (3.15)

whose elements can be interpreted geometrically as rotations. It can be proven that SO(n)
is a Lie group, see e.g. [Hal03]. Then, we can compute the Lie algebra so(n) of the special
orthogonal group SO(n), which illustrates that the presence of skew-symmetric matrices in the
definition of the cross product is expected. To achieve this, we give the following definitions:

Definition 3.1 ([Hal03]). The Lie algebra of a matrix Lie group G is the set of all matrices X
such that etX is in G for all t ∈ R.

Proposition 3.2 ([Hal03]). The Lie algebra of SO(n) consists of all real matrices A such that
AT = −A, i.e. of all real skew-symmetric matrices.

Proof. A real matrix A belongs to SO(n) if and only if AT = A−1 and det(A) = 1. Thus, etA

is in SO(n) if and only if
(
etA
)T

=
(
etA
)−1

and det
(
etA
)
= 1. Using the properties of the

matrix exponential, the first equality can be written further as etA
T
= e−tA for all t ∈ R. So

this holds if and only if AT = −A. Using Theorem 2.12 from [Hal03], the second equality from
earlier becomes det

(
etA
)
= etrace(tA) = etrace(A)t = 1 for all t ∈ R. Hence, trace(A) = 0. But

this second condition does not add anything new to the Lie algebra because we can go from
AT = −A by taking trace on both sides and find that A has to have null trace. Definition (3.1)
concludes the proof.

We have given here a brief description of some of the geometric properties of Eq. (3.4). In
the following section, we study how methods that preserve these properties can be developed.

3.3.3 Building Blocks

A subclass of geometric integrators is the collection of symplectic integrators. These can be
built, for example, by considering Runge-Kutta methods and checking whether the coefficients
automatically preserve the symplectic property. Another more straightforward approach hinges
on splitting techniques, also known as Lie-Trotter methods [LM16].

The underlying idea of splitting schemes is that the vector field associated with the differen-
tial equation under consideration can be decomposed into several integrable parts. Subsequently,
one determines the flow maps (or, sometimes, approximate flow maps) for each of the individual
pieces and composes them to obtain an approximation of the solution to the original equation.
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Consider, for example, the following simple ODE:

ẏ = f = f1 + f2, (3.16)

so that the original vector field f is split into analytically integrable parts f1 and f2. Suppose
that the flow maps for the equations:

ẏ = f1, ẏ = f2, (3.17)

are given by ϕ1
h and ϕ2

h, respectively. Then the following two maps:

ϕ̂1,2
h = ϕ1

h ◦ ϕ2
h (3.18)

ϕ̃2,1
h = ϕ2

h ◦ ϕ1
h (3.19)

are approximations of the flow map ϕh corresponding to the original ODE. Moreover, Leimkuhler
and Matthews [LM16] state that any part in the splitting may be replaced by an approximation
of the flow map, rather than the flow map itself. For example,

ϕ̄1,2
h = ϕ1

h/2 ◦ ϕ
2
h/2 (3.20)

is another symplectic numerical method.
In terms of convergence, it is shown in [LM16] that if f1 is C2, then the approximation

(3.18) is second-order accurate, or equivalently:

∥ϕh − ϕ̂1,2
h ∥ ≤ Ch2. (3.21)

In addition, they also illustrate that symmetric compositions have even convergence order, a
fact which we make use of in our own integrators.

Splitting methods applied to ODEs can be extended to problems which involve Hamiltonians
describing the energy for a system of spins. In fact, such an integrator is developed in [FHL97]
for Eq. (3.5) with the following Hamiltonian:

H = −
∑
i

Si · Si+1. (3.22)

The first algorithms described in [FHL97] involve splitting H = H1 +H2, where:

H1 = −
∑
i

Si · Si+1, H2 = −
∑
i

Si · Si−1. (3.23)

Another approach proposed in [FHL97] involves splitting the vector field on the RHS of Eq.
(3.5) into odd- and even-spins interactions, known as the staggered Red-Black method.

Splitting methods can be broadened further to consider stochastic differential equations
(SDEs). Such an example is illustrated in [LM16], where multiple geometric integrators for the
following Langevin equation are developed:

dq = M−1pdt (3.24)

dp = −∇U(q)dt− γpdt+
√
2γkBTM

1/2dW. (3.25)

This is achieved by dividing the system (3.24) in three parts:

d

(
q
p

)
=

(
M−1

0

)
dt+

(
0

−∇U(q)

)
dt+

(
0

−γpdt+
√
2γkBTM

1/2dW

)
. (3.26)

The first two terms in the splitting can be integrated analytically, while the third is the Orn-
stein–Uhlenbeck process, with an established solution [Gar+85]. As explained in [LM16], dif-
ferent composition of the three maps give approximations with different orders of convergence.

In addition, an integration algorithm for Eq. (3.4) based on splittings was proposed in
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[MD11]. In particular, the scheme uses the Suzuki-Trotter decomposition [HS05] whose sym-
plectic structure is essential in this context. Their approach is to consider Eq. (3.4) for each
spin Si individually, and solve it for a generic Hamiltonian H independent of time. To achieve
this, Ma and Dudarev split Eq. (3.4) into its deterministic and stochastic parts, as follows:

dSi = Si ×∇SiHdt+ γSi × (Si ×∇SiH) dt (3.27)

dSi =
√
ηSi × dWi, (3.28)

and analytically solve them. The solution to Eq. (3.27) involves switching to polar coordi-
nates, analytically integrating the resulting equations and then switching back to Cartesian
coordinates. We were not successful in applying the same procedure to our time-dependent
Hamiltonians (3.2) and (3.3), and hence, resorted to a different splitting-composition method.
Moreover, [MD11] does not provide a technique for solving Eq. (3.28). Since we also keep the
stochastic term isolated in our schemes, we derive a solution to Eq. (3.28) ourselves, which is,
to some extent, different from the one proposed in [MD11].

We do not dwell on the underlying details of the preceding methods. Rather, we stress
that they establish a theoretical foundation for extending symplectic integrators for ODEs to
splitting methods for systems of spins and SDEs, which is precisely the subject of this chapter.

3.3.4 A proposed method for the Single-Spin Case

We now introduce our approach to solving the Langevin equation (3.4) using splitting methods.
For both of our choices of Hamiltonian (3.2) and (3.3), Eq. (3.4) is, to the best of our knowledge,
not analytically integrable. We propose in this report two different splittings for each of the
two Hamiltonians, as we chronologically established and implemented them.

We first focus on the single-spin Hamiltonian (3.2), whose gradient with respect to S is:

∇SH = −DS − h. (3.29)

One technique of splitting equation (3.4) rests on the scheme developed for the rigid body
Hamiltonian and the Euler equation in [LM16]. In particular, we first use the form of the
Hamiltonian (3.2), or equivalently the form of its gradient (3.29), to separate the two terms
1/2S ·DS and h · S. Upon substitution, the equation for the quadratic term becomes:

dS = −S ×DSdt− γS × (S ×DS)dt+
√
ηS × dW. (3.30)

The equation for the linear term is analogous, with DS replaced by h above.
These can be split further by considering each column corresponding to the diagonal entries

in the matrix D = diag(d1, d2, d3) and each entry in the vector
(
hx, hy, hz

)T
individually, so

that the gradient (3.29) becomes:

∇SH = −D1S −D2S −D3S − h1 − h2 − h3, (3.31)

where, for example, D1 =
(
d1, 0, 0

)T
and h1 =

(
hx, 0, 0

)T
. Note that this second splitting

step only affects the deterministic terms of Eq. (3.30).
To simplify the problem even more, we split the resulting equation again into its three

constituting parts: conservative, dissipative and stochastic. This third splitting step leads to
the following three equations, which we can now solve analytically:

dS = −S ×D1Sdt (3.32)

dS = −γS × (S ×D1S) dt (3.33)

dS =
√
ηS × dW. (3.34)
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It is worth mentioning that one need not perform the last splitting, since Eq. (3.32) and Eq.
(3.33) can be analytically integrated together, as we show later in this chapter. In addition, we
note that it suffices to solve Eq. (3.32) and Eq. (3.33) for D1, since the solutions for the other
terms in the splitting, i.e. corresponding to D2, D3, and h1, h2, h3, are analogous.

Hence, we now turn our attention to Eq. (3.32). After computing the cross product S×D1S,
we obtain the following system of equations:Ṡx

Ṡy

Ṡz

 =

 0
−d1S

zSx

d1S
ySx

 . (3.35)

This is a system that we can now easily solve.
Clearly, the first equation gives Sx(t) = Sx(0), while the other two equations constitute,

upon substituting Sx, a coupled system of first order ODEs, which has the form of the harmonic
oscillator system (3.9). One way to solve this system is by differentiating one of the equations
again, and then substituting the other, leading to a second order linear ODE, as follows:

S̈y = −Sx(0)d1Ṡ
z = − (Sx(0)d1)

2 Sy. (3.36)

Using the characteristic equation and imposing the initial conditions on Sy(0) and Ṡy(0), we
obtain the following solution:

Sy(t) = Sz(0) sin (d1S
x(0)t) + Sy(0) cos (d1S

x(0)t) . (3.37)

The full derivation of this solution is given in Appendix A.1. Moreover, the solution Sz can be
found analogously to be:

Sz(t) = Sy(0) sin (d1S
x(0)t)− Sz(0) cos (d1S

x(0)t) . (3.38)

This gives a complete solution S to Eq. (3.32).
We now focus on Eq. (3.33). Here, the double cross product γS × (S ×D1S) yields:Ṡx

Ṡy

Ṡz

 =

γd1S
x(Sy)2 + d1S

x(Sz)2

−γd1S
y(Sx)2

−γd1S
z(Sx)2

 . (3.39)

Multiplying each equation by 2Sx, 2Sy and 2Sz, respectively, and letting ux := (Sx)2, uy :=
(Sy)2 , and uz := (Sz)2, we obtain the following equivalent system of equations:u̇x

u̇y

u̇z

 =

2γd1u
x(uy + uz)

−2γd1u
yux

−2γd1u
zux

 . (3.40)

Note that, using ∥S∥ = 1 ⇐⇒ ux + uy + uz = 1, the first equation becomes:

u̇x = 2γd1u
x (1− ux) . (3.41)

This is now a logistic differential equation, which can be solved, for example, by using partial
fractions, as shown in Appendix A.2. The solution is:

ux(t) =
R exp(2γd1t)

1 +R exp(2γd1t)
, (3.42)

where R = ux(0)/(1− ux(0)). This then gives Sx(t) = ±
√
ux(t).
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Next, to obtain a solution for uy and uz, we return to Eq. (3.40) and note that we need
only integrate ux, since, for example, the equation for uy gives:∫ uy

uy(0)

1

v
dv = −2γd1

∫ t

0
uxdt′ = −2γd1

∫ t

0

R exp(2γd1t)

1 +R exp(2γd1t)
dt′, (3.43)

The integral on the RHS can be computed by substituting w = 1 + R exp(2γd1t), as shown in
Appendix A.2. The solution uy(t) becomes:

uy(t) = uy(0)
1 +R

1 +R exp(2γd1t)
. (3.44)

This yields the solution Sy(t) = ±
√

uy(t). Analogously, we find:

uz(t) = uz(0)
1 +R

1 +R exp(2γd1t)
, (3.45)

so that Sz = ±
√
uz(t). This completes the solution to Eq. (3.33).

Finally, we derive an analytical solution for Eq. (3.34). Since Eq. (3.14) is a SDE at the
so(n) Lie algebra level, as motivated in Section 3.3.2, the solution S(t) is to be found at the
group level. More specifically, suppose X(t) ∈ SO(n), for all t ∈ R. If we write X(t) = X0e

Θ(t),

where X0 := X(0), then since X(t)TX(t) = In, it follows that eΘ(t)TXT
0 X0e

Θ(t) = In, and so

eΘ(t)T eΘ(t) = In, or in other words eΘ(t)T = e−Θ(t), for all t ∈ R, which gives ΘT = −Θ.
This suggests the ansatz S(t) = S(0)R(t), where R(t) is an element of SO(3). Differentiating

this with respect to t and substituting the result in Eq. (3.14) gives:

R′(t)S(0)dt =
√
η skew(dW (t))R(t)S(0). (3.46)

This holds for all S(0) assumed to be non-zero. Multiplying both sides by R−1(t), integrating
and exponentiating yields, after some manipulation:

S(t) = S(0)e
√
η
√
t skew(W (1)). (3.47)

Now, suppose we have ω =
(
ω1, ω2, ω3

)T
, where each component is a standard Gaussian

random variable such that ∥ω∥ = 1. Then:

Ω := skew(ω) =

 0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0

 . (3.48)

Performing the usual matrix multiplication, we observe that Ω3 = −Ω. Hence, by the general
formula for the matrix exponential [Hal03], upon simplification, we have that:

e
√
ηtΩ = I3 + sin(

√
ηt)Ω +

(
1− cos(

√
ηt)
)
Ω2. (3.49)

Therefore, the solution to Eq. (3.34) is:

S(t) = S(0)
(
I3 + sin(

√
ηt)Ω +

(
1− cos(

√
ηt)
)
Ω2
)
. (3.50)

The full derivation of the procedure described above is given in Appendix A.3.
We can now obtain an approximation to the solution of Eq. (3.4) for the Hamiltonian

(3.2) by composing the solutions we obtained for each of the terms in the splitting. We sacri-
fice computational effort in favour of accuracy and only using symmetric compositions in our
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implementations. Hence, one such possible approximation can be expressed as:

ŜC
h/2 = SC,D1

h/2 ◦ SC,D2

h/2 ◦ SC,D3

h/2 ◦ SC,c1
h/2 ◦ SC,c2

h/2 ◦ SC,c3
h/2

ŜD
h/2 = SD,D1

h/2 ◦ · · · ◦ SD,c3
h/2

Ŝh = ŜC
h/2 ◦ Ŝ

D
h/2 ◦ S

S
h ◦
(
ŜD
h/2

)−1
◦
(
ŜC
h/2

)−1
, (3.51)

where, SC , SD and SS represent the solutions to the conservative, dissipation and stochastic
equations (3.32), (3.33) and (3.34), respectively. Further, SD1 denotes, for example, the solution
to the equation corresponding to the D1 part of the Hamiltonian, while Sh/2 indicates that the
solution is evaluated at t = h/2. Here, (·)−1 stands for the reverse composition of maps.

This completes the description of our approach to constructing an approximate solution
to Eq. (3.4) for the single-spin Hamiltonian (3.2) by exploiting splitting methods. In the
subsequent section, we propose a different integrator for the system-of-spins Hamiltonian (3.3).

3.3.5 A proposed method for the System-of-Spins Case

Recall from the end of Section 3.3.3 that the method proposed by Ma and Dudarev [MD11]
treats Eq. (3.4) for each spin Si, i = 1, . . . N , independently. In contrast, we divide pairwise
interactions of coupled spins Si-Sj , and solve the resulting equation as outlined below.

First, note that the gradient of the Hamiltonian (3.3) with respect to one spin Si is:

∇SiH = −1

2

∑
j:i∼j

JijSj − hi, (3.52)

where i ∼ j indicates that we only sum over the spins which are coupled with Si.
As with the one-spin case, we simplify the problem by separating the interaction and

external-field terms in the expression of the gradient (3.52). Upon substitution, for the hi
term and for one spin Si, Eq. (3.4) simplifies greatly to:

dSi = −Si × hidt− γSi × (Si × hi)dt+
√
ηSi × dWi, (3.53)

which is identical to equation corresponding to the h term in the one-spin case.
For the interaction term, we split the Hamiltonian further by considering only pairwise

couplings. In particular, we break the sum in Eq. (3.52) and treat each term individually.
Consequently, for an arbitrary interaction Si-Sj , Eq. (3.4) becomes:

dSi = −1

2
JijSi × Sjdt−

1

2
JijγSi × (Si × Sj)dt+

√
ηSi × dWi. (3.54)

Further, observe that the stochastic term in Eq. (3.53) and (3.54) is independent of hi and
Sj , respectively. Therefore, we can isolate it, and simply consider the equation:

dSi =
√
ηSi × dWi, (3.55)

for each spin Si, i = 1, . . . , N . Notice that this equation is exactly the stochastic equation (3.34)
for the one-spin case. Thus, we can use the solution defined in Eq. (3.50) for each spin Si as
an element of our splitting-composition method.

Now we need only solve the deterministic unit in the aforementioned equations. To this end,
we can rewrite Eq. (3.54) by removing the stochastic term, both for an arbitrary interaction
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Si-Sj , and for its corresponding Sj-Si reverse coupling. This yields the following coupled system:{
Ṡi = −1

2JijSi × Sj − 1
2JijγSi × (Si × Sj)

Ṡj = −1
2JjiSj × Si − 1

2JjiγSj × (Sj × Si),
(3.56)

where Jij = Jji. We highlight here that we believe that this system of equations is, in fact,
analytically integrable, and we give the partial solution in Appendix A.4. However, we could
not derive the full solution, hence we resort to a different approach.

To simplify the problem, we decouple the system (3.56) by successively setting Ṡi = 0 and
Ṡj = 0, so that Si(t) = Si(0) and Sj(t) = Sj(0), respectively. In addition, we solely turn our
attention to the first case, since the second is, in fact, analogous. By doing so, note that Eq.
(3.53) and (3.54) become equivalent, since they both now involve a vector which is independent
of time, namely hi and Sj(0), respectively. Thus, it suffices to solve either of them.

Accordingly, let us consider the deterministic term in Eq. (3.54). Unlike in Section 3.3.4, we
do not split this further by treating the conservative and damping terms independently. Rather,
we solve the equation by directly separating each entry in the vector Sj(0), yielding:

Ṡi = −1

2
JijSi × SX

j (0)− 1

2
JijγSi × (Si × SX

j (0)), (3.57)

where SX
j (0) =

(
Sx
j (0), 0, 0

)T
. In addition, we obtain two more equations for the Sy

j (0) and
Sz
j (0) components. It is now enough to solve Eq. (3.57), as the remaining ones are analogous.

We achieve this by first working through the cross product, which gives:Ṡx
i

Ṡy
i

Ṡz
i

 =

1
2JijγS

x
j (0)(S

y
i )

2 + 1
2JijγS

x
j (0)(S

z
i )

2

−1
2JijS

z
i S

x
j (0)− 1

2JijγS
x
i S

y
i S

x
j (0)

1
2JijS

y
i S

x
j (0)− 1

2JijγS
x
i S

z
i S

x
j (0)

 . (3.58)

Using the fact that ∥Si∥ = 1, the first equation becomes:

Ṡx
i =

1

2
JijγS

x
j (0)

(
1− (Sx

i )
2
)
. (3.59)

This can be solved by using partial fractions, as shown in Appendix A.5. The solution is:

Sx
i (t) =

M exp
(
JijγS

x
j (0)t

)
− 1

M exp
(
JijγSx

j (0)t
)
+ 1

, (3.60)

where M = (1 + Sx
i (0)) / (1− Sx

i (0)) . Now we need to solve the following coupled system of
equations: {

Ṡy
i = −1

2JijS
z
i S

x
j (0)− 1

2JijγS
x
i S

y
i S

x
j (0)

Ṡz
i = 1

2JijS
y
i S

x
j (0)− 1

2JijγS
x
i S

z
i S

x
j (0).

(3.61)

Multiplying the first equation by Sz
i , the second equation by −Sy

i and adding them yields:

Ṡy
i S

z
i − Sy

i Ṡ
z
i = −1

2
JijS

x
j (0)

(
(Sy

i )
2 + (Sz

i )
2
)
. (3.62)

Dividing this equation by (Sz
i )

2, one could recognise the derivative of the quotient on the left-
hand side, and arrive at:

˙(
Sy
i

Sz
i

)
= −1

2
JijS

x
j (0)

(
1 +

(
Sy
i

Sz
i

)2
)
. (3.63)
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Setting v(t) := Sy
i (t)/S

z
i (t), we obtain an equation which can be solved again using the separa-

tion technique, as shown in Appendix A.5. The solution is:

Sy
i

Sz
i

=
v(0) cos

(
1
2JijS

x
j (0)t

)
− sin

(
1
2JijS

x
j (0)t

)
cos
(
1
2JijS

x
j (0)t

)
+ v(0) sin

(
1
2JijS

x
j (0)t

) . (3.64)

If we denote the right-hand side of equation (3.64) by g(t) and substitute Sy
i = g(t)Sz

i into the
equation for Ṡz

i in (3.61), we find that:

Ṡz
i =

1

2
Jijg(t)S

z
i S

x
j (0)−

1

2
JijγS

x
i S

z
i S

x
j (0), (3.65)

which becomes and ODE in the Sy variable. We can integrate the right-hand side as described
in Appendix A.5, so that the solution Sz

i (t) is given by:

Sz
i (t) = Sz

i (0)
1 +M

exp(−1
2JijγS

x
j (0)) +M exp(12JijγS

x
j (0))

(
cos

(
1

2
JijS

x
j (0)t

)
+ v(0) sin

(
1

2
JijS

x
j (0)t

))
,

(3.66)
and the solution Sy

i (t) is obtained immediately from equation (3.64).
Finally, to obtain an approximation to the solution of Eq. (3.4) for the Hamiltonian (3.3),

we need only compose the maps derived above. We propose a similar procedure to Section 3.3.4,
and use symmetric compositions only. Accordingly, one such possible approximation is:

Ŝi
h/2 =

(
⃝

j:i∼j

(
Sj,x
h/2 ◦ S

j,y
h/2 ◦ S

j,z
h/2

))
◦ Shi,x

h/2 ◦ Shi,y
h/2 ◦ Shi,z

h/2 ◦ SSi
h

Ŝh =
N
⃝
i=1

Ŝi
h/2 ◦

1
⃝
i=N

(
Ŝi
h/2

)−1
, (3.67)

where Sj denotes the solution associated with the specific interaction Si-Sj . Further, Sα,
α ∈ {x, y, z} refers to the solution to the equation corresponding to each component α of Sj(0),
while SSi is the solution to the stochastic equation for spin Si. Here, Sh/2 indicates that the
solution is evaluated at t = h/2, and (·)−1 stands for the reverse composition of maps.

Thus, in this section we described how the LL equation (3.4), together with the Hamiltonians
(3.2) and (3.3), can be used to model the motion of one spin, as well as of a system of interacting
spins, respectively. Additionally, we have described how splitting methods can be applied to
the problem at hand, with an emphasis on the two new schemes proposed in this report. This
can now be used to simulate quantum annealing, which is the topic of Chapter 5. However,
we first give, in the subsequent section, a summary of how annealing is implemented on the
D-Wave quantum machine.
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4 D-Wave implementation of Quantum Annealing

Having motivated the use of quantum annealers for solving optimisation problems in Section
1.1, we shall now examine how the quantum annealing process is implemented on the publicly
available D-Wave’s quantum computer, based on their documentation [D-Wf].

As explained in Section 2.1, inside a quantum computer, qubits are devised as circulating
currents with a corresponding magnetic field, which is also the case for the D-Wave’s quantum
machine. Moreover, each qubit has attached to it an external magnetic field, as well as a fixed
number of couplers which depends on the specific architecture.

Thus, together, the strength of the external magnetic field and of the coupling, also known
in D-wave [D-Wg] as biases and weights, respectively, define the problem which the quantum
annealer subsequently solves. In particular, they define an energy landscape, so that at the end
of the quantum annealing process the minimum energy of that landscape is returned.

Furthermore, the D-Wave’s quantum processing unit (QPU) is a physical realisation of the
quantum Ising spin system in a transverse field [D-Wg], so that the time-dependent Hamiltonian,
which defines the energy for a problem, is the Ising Hamiltonian [Cip87], given by:

Hising = −A

2

(∑
i

σx
i

)
︸ ︷︷ ︸
Initial Hamiltonian

+
B

2

∑
i

hiσ
z
i +

∑
i>j

Ji,jσ
z
i σ

z
j


︸ ︷︷ ︸

Final Hamiltonian

. (4.1)

Here, hi and Ji,j give the sign and magnitude of the the aforementioned external field and
coupling strengths, and they are limited to those available in the QPU graph (namely the
Pegasus or Chimera graphs [D-Wb]). Additionally, σx

i and σz
i are Pauli matrices operating

on qubit qi, and the physical implementation of the qubit qi is given by the one-dimensional
Ising spin si, taking values ±1. Moreover, A(t) and B(t) are called the annealing functions, as
they define the schedule according to which the system is annealed, and they are expressed as
energies in units of Joules [D-Wg].

The two terms in (4.1) are the initial and final Hamiltonian. The former is also known as
the tunneling Hamiltonian, since this is what causes the quantum tunneling phenomenon to
take place, while the latter is also called the problem Hamiltonian, since its lowest-energy state
provides the answer to the minimisation problem under consideration.

To sample from the Ising model (4.1), one option is to call the sample ising method
available in the DWaveSampler class, whose mandatory parameters are the qubit biases and
coupling strengths in the form of Python dictionaries. The problem is then submitted to the
quantum annealer through the Solver API (SAPI), and a digital-to-analog converter (DAC)
attached to each qubit and coupler converts the submitted constants to electric current [D-Wa].

Subsequently, the annealing process starts at t0 = 0µs and ends at tf µs, parameter which
can be specified by the user in the aforementioned function. When t = 0, A(t) ≫ B(t) and
the system is in the lowest-energy of the initial Hamiltonian, when all the qubits are in their
superposed state. Progressively, A decreases and B increases until t = tf , so that the influence
of the problem Hamiltonian is enhanced, while the impact of the tunneling Hamiltonian is
diminished. If the annealing is performed slowly enough, when t = tf , B(t) ≫ A(t) and the
system is in the lowest-energy state of the final Hamiltonian, when all the qubits are in classical
states.

As mentioned in Section 2.5, choosing an annealing schedule is a non-trivial task. Here, the
values of the annealing functions A and B for each of D-Wave’s QPUs (Advantage system3.2,
Advantage system4.1, Advantage system5.1, DW 2000Q 6) are available in the form of an xlsx

file, along with their QPU-specific characteristics [D-Wc]. For instance, Figure 4.1 illustrates
typical annealing functions A and B used in the D-Wave’s Advantage systems [D-Wa]. Here,
s = t/tf is the normalised annealing fraction and represents the annealing time, so that 0 ≤ s ≤
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Figure 4.1: Annealing functions A(s) and B(s). The quantum critical point (QCP) is the point
where the amplitudes of A(s) and B(s) are equal. [D-Wa]

1. Figure 4.1 also shows the quantum critical point (QCP), i.e. the point where A(s) = B(s),
which is where a phase transition takes place and topological defects may occur [Hod89].

The predefined values of A(s) and B(s) are described in terms of the hardware implementa-
tion of the quantum annealer. In particular, A is the energy difference between the two eigen-
states of the rf-SQUID (Superconducting QUantum Interference Device) qubit used in the D-
Wave’s quantummachines with no external applied flux. On the other hand, B = 2MAFMIp(s)

2,
whereMAFM is the maximum available mutual inductance achievable between pairs of flux qubit
bodies and Ip is the magnitude of the current flowing through the body of the rf-SQUID loop
[D-Wa].

While the A and B functions cannot be modified, the user can control the annealing sched-
ule s or, in other words, the trajectory of the annealing functions. The default schedule is
linear, so that s = t/tf . This can be changed through the anneal schedule parameter in the
sample ising method, as long as the submitted schedule adheres to certain restrictions [D-Wd].

In addition, there seems to be some flexibility in how the user can control the annealing
process which occurs inside the D-Wave’s quantum machines. Apart from varying the annealing
schedule s as explained above, one can also pause, which makes the system wait for a given
amount of time at a particular A(s) and B(s), or quench the schedule, which abruptly stops the
annealing process near the specified point, or even initialise the qubits into a specific classical
state and then anneal in reverse. Moreover, the values of A and B can be vertically shifted,
known as anneal offset, allowing the user to control the anneal path of each qubit [D-Wa].

Nonetheless, one limitation of using the sampling methods available in the DWaveSampler

class (or any predefined class in the dwave-system API) is that the returned values only provide
information about the result of the annealing process, and not the intermediate mechanism.
This restricts the comparisons we can perform with our simulations, which is the topic of the
following section.
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5 Numerical Experiments

Throughout this section, we explore various numerical experiments which can be mainly divided
into the following two groups: validation and simulations. The former is concerned with inves-
tigating whether the integrators we have developed in Sections 3.3.4 and 3.3.5 behave correctly,
while the latter aims to contrast the results obtained from our quantum annealing simulations
with the outcomes retrieved from the D-Wave’s quantum annealer (QA).

5.1 Validation

In the absence of an analytical solution to Eq. (3.4), we do not carry out experiments related
to the error analysis of our integrators. It is worth mentioning that, since this is a stochastic
equation, it is possible to approximate the order of the error associated with the two methods.
In particular, this can be achieved by first computing a reference solution Ŝhref

obtained by
employing, for example, the integrator (3.51) with a very small stepsize href. Similarly, solutions
Ŝh are then approximated with larger stepsizes h, so that one can subsequently compute:

e =
∣∣∣Ŝhref

− Ŝh

∣∣∣ . (5.1)

This can be repeated for the integrator (3.67). Due to the computational resources required to
carry out this analysis, we exploit alternative techniques to validate our numerical methods.

First, one of the essential geometric properties described in Section 3.3.2 is the norm. This
should satisfy ∥Si(t)∥ = 1, ∀t, or equivalently each spin Si should always stay on the unit
sphere, with i = 1, . . . N , where N is the number of spins in the system, so that N = 1 gives
the single-spin case. Accordingly, Figure 5.1 shows that this is indeed the case, up to machine
precision, for both our integrators (3.51) and (3.67).

Next, we turn our attention to the N = 1 case. Since our integrator (3.51) is constructed
by separating the conservative, damping and stochastic terms in Eq. (3.4), we verify whether
each corresponding element in the composition performs as expected. To this end, we use the
observations in Section 3.2 related to each of the aforementioned components.

Thus, Figure 5.2a depicts the conservative dynamics generated by composing the component-
wise solutions to Eq. (3.32). In particular, we see the spin orbiting around an applied magnetic

field, namely h =
(
1, 1/4, 1/6

)T
. Further, Figure 5.2b illustrates the dissipative dynamics

obtained similarly from Eq. (3.33). The damping term should cause the motion of the spin
to simply disperse to a specific point, determined again by the external field, which is, indeed,
what we observe in Figure 5.2b. Finally, Figure 5.2c reproduces the motion of a spin S under

(a) Single-spin case (b) System-of-spins case

Figure 5.1: Plot of the norm ∥Si∥ of one spin for integrators (3.51) and (3.67).
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(a) Conservative dynamics (b) Dissipative dynamics (c) Stochastic dynamics

Figure 5.2: Plot of the individual dynamics in Eq. (3.4) for a single spin S.

(a) T = 0.01 (b) T = 0.1 (c) T = 1

Figure 5.3: Plot of the stochastic dynamics in Eq. (3.34) for different temperatures T .

the dynamics imposed by the governing stochastic equation (3.34). This resembles Brownian
motion dynamics on the unit sphere, as expected.

In addition, since both integrators (3.51) and (3.67) share the solution to the stochastic
equation (3.11), a relevant test is whether the solution (3.50) satisfies the ergodic theorem
[Bir31], given in Appendix A.6. Roughly speaking, the theorem states that, given enough time,
almost all trajectories of a dynamical system eventually stretch to every point in the phase
space.

In the current context, we can verify the ergodic theorem either by fixing temperature T
and letting the simulation run long enough, or by varying T , since this essentially governs the
amount of stochasticity in the system. The latter procedure is illustrated in Figure 5.3, where
we increase temperature from T = 0.01 in Figure 5.3a, to T = 0.1 in Figure 5.3b and T = 1 in
Figure 5.3c. Indeed, as we gradually raise the temperature, we notice that the motion of the
spin covers more and more points on the sphere, as anticipated.

Let us now focus on a system with N > 1 spins. Here, perhaps the most rigorous assessment
of our integrator (3.67) consists of computing an observable for which we can establish a theo-
retical relationship. For example, we show in Appendix A.7 that for the rigid body Hamiltonian
H = 1

2S ·DS, the following holds:

⟨H⟩ρβ =
3

2
T, (5.2)

where ⟨·⟩ρβ denotes the average with respect to the stationary distribution ρβ. By the er-
godic theorem, ⟨H⟩ρβ is equal to the long-time average of H, giving a tractable procedure for
numerically verifying Eq. (5.2).

While we have not extended the derivation in Appendix A.7 to the system-of-spins Hamil-
tonian (3.3), intuitively we still expect the average energy to scale linearly with temperature.
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Figure 5.4: Plot of the mean energy ⟨H⟩ for the Hamiltonian (3.3) against temperature T , with
N = 4 spins, n = 106 steps, and stepsize h = 10−4.

(a) N = 1 (b) N = 4 with SA (c) N = 4 with SQA

Figure 5.5: Plot of the trajectory of N spins on sphere.

In fact, this hypothesis is also supported by our numerical experiments. Specifically, Figure
5.4 depicts the mean energy of H computed with N = 4 spins, n = 106 steps, and stepsize
h = 10−4. On the x-axis, we plot the temperature T , where T ∈ {10−3, 10−2, 10−1, 1}, while
on the y-axis, we plot the mean energy ⟨H⟩ for each of the aforementioned T . Certainly, the
resulting approximating line does not fully match the reference line. However, this can be jus-
tified, by the fact that, on the one hand we did not run long enough simulations, and, on in the
other hand, we included too many points in the estimation of the average, that is, we did not
discard sufficiently many points to allow the system to fully relax.

Finally, to visualise the complete dynamics governed by Eq. (3.4), we demonstrate the
motion of N ≥ 1 spins generated by our integrators (3.51) and (3.67) in Figure 5.5.

First, Figure 5.5a depicts the motion of one spin for the N = 1 case, where we use D =

diag(1, 1/2, 1/3) and apply an external field h =
(
1, 1/4, 1/6

)T
. Indeed, we observe a damped

stochastic orbital motion on the unit sphere, until the spin S aligns with the external field h
and subsequently oscillates around it on a small scale.

Further, Figures 5.5b and 5.5c illustrate the N = 4 case where we only use nearest-neighbour
interactions, forming a chain of spins with open boundary conditions, i.e the first and last
spin do not interact with each other. Additionally, we use Ji,j = 1 to force ferromagnetic
interactions, so that, at the end, all the spins align with each other, and apply an external field

h1 =
(
0, 0, −1

)T
to the first spin only. In addition, Figure 5.5b is generated using simulated

annealing (SA) as described in Chapter 2, with temperature schedule Tk = T0/(1 + αk), where
T0 = 1 is the initial temperature, k is the iteration number, and we take α = 1. On the other
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Figure 5.6: Chain of four spins with open boundary conditions and ferromagnetic couplings.

(a) SA (b) SQA

(c) D-Wave’s QA

Figure 5.7: Simulated annealing, simulated quantum annealing and quantum annealing for a
ferromagnetic chain of four spins.

hand, in Figure 5.5c we employ simulated quantum annealing (SQA) as it is also detailed in
Chapter 2, with the transverse field Γ(t) = 1/t. In both cases, we notice the same behaviour:
the spins align with each other and then with the applied external field. The difference in the
type of motion essentially stems from the temperature T . In particular, in SA temperature
is decreased, and consequently, so is the amount of stochasticity in the system, while in SQA
temperature is low, yet constant, and therefore stochasticity is always present.

Having validated our integrators (3.51) and (3.67), we now direct our attention to performing
simulations with specific system of spins and comparing the outcomes to the D-Wave’s QA
results.

5.2 Simulations

In this section, we only consider two systems of spins, namely a chain of four spins with open
boundary conditions, and a frustrated system of eight spins. The former is a simple case which
aims to provide a better understanding of the underlying procedure, while the latter is an
intricate problem developed by Kadowaki and Nishimori [KN98] which exhibits meta-stability.

5.2.1 Chain of four spins

The configuration considered in this section is identical to the one described at the end of Section
5.1 for Figures 5.5b and 5.5c. Specifically, the system is highlighted in Figure 5.6, where full
lines indicate ferromagnetic interactions. The global minimum for the system is achieved when
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Figure 5.8: Frustrated system of eight spins as proposed by Kadowaki and Nishimori [KN98].

Si =
(
0, 0, −1

)
, or, for the one-dimensional Ising spins, si = −1, i = 1, . . . , 4, which yields:

H = −(S1 · S2 + S2 · S3 + S3 · S4)− (S1 · h1) = −4. (5.3)

Correspondingly, the energy relaxation for the system, as well as the D-Wave’s QA result
are given in Figure 5.7. In particular, Figure 5.7a illustrates the evolution of the chain’s energy
in time using SA with the temperature schedule Tk = T0/(1 + αk), where T0 = 1 is the initial
temperature, k is the iteration number, and we take α = 1. Note that H ≈ −4 within the first
103 iterations. Moreover, in Figure 5.7b we apply our integrator (3.67) to simulate the quantum
annealing process with the transverse field Γ(t) = 1/t, where t = kh, h denoting the stepsize.
Thus, we observe again that the energy dips to the ground state H ≈ −4, albeit more slowly.
In both cases, we use n = 105 steps, with stepsize h = 10−2.

Additionally, Figure 5.7c is retrieved from D-Wave’s integrated development environment
(IDE) Leap [D-We] which provides direct access to their Advantage quantum system. Following
the procedure described in Section 4, we input the same values as above for the coupling and
external magnetic field strength to the sample ising function, and use the default annealing
time 20µs and default schedule s. Hence, the left-hand side of Figure 5.7c shows the system
configuration found from the aforementioned parameters, while the right-hand side is a his-
togram illustrating the number of times the annealer reaches the ground state H = −4, where
the Hamiltonian H is given by Eq. (4.1).

Consequently, we acknowledge that for systems as simple as chains of spins, both simu-
lated and quantum annealing readily identify the corresponding global minimum. In order to
reproduce the trapping phenomenon, that is, the system being temporarily frozen in a local
minimum, in the subsequent section, we make use of a more complex configuration.

5.2.2 Frustrated system of eight spins

Let us now consider the system of eight spins proposed in [KN98], whose structure is reproduced
in Figure 5.8. Here, full lines indicate ferromagnetic couplings, while dashed lines stand for anti-
ferromagnetic couplings, which we impose by letting Jij = 1 and Jij = −1, respectively, making
the system frustrated. In addition, similar to the previous experiment, we apply an external

field h1 =
(
0, 0, −1

)T
to the first spin only.

Hence, this system has a global minimum at H = −10, which is achieved again when
Si =

(
0, 0, −1

)
, or, for the one-dimensional Ising spins, si = −1, i = 1, . . . , 8. However, this

specific organisation of spins also exhibits local minima at H ∈ {−8,−6}. This is precisely what
makes the previously mentioned configuration frustrated: the system cannot simultaneously
achieve its ground state and comply with the requirements enforced by the couplings.

Accordingly, we anticipate that the associated energy H briefly stabilises at the H = −6
and H = −8 levels, before declining further to the ground state H = −10. In order to test
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(a) H trapped at −6 with SA (b) H trapped at −6 with SQA

Figure 5.9: Plot of the evolution of the energy H in time, with the system temporarily trapped
in local minimum H = −6.

(a) H trapped at −8 with SA (b) H trapped at −6 with SQA

Figure 5.10: Plot of the evolution of the energy H in time, with the system temporarily trapped
in local minimum H = −8.

our hypothesis, we employ our integrator (3.67) first with SA, exploiting the same temperature
schedule as before, namely Tk = T0/(1 + αk) with T0 = 1 and α = 0.5, and afterwards with
SQA, adopting an exponential transverse field, given by Γ(t) = e−t.

In all our simulations below we use n = 105 steps and stepsize h = 10−2. Additionally, in
an effort to emulate the format of the outcomes retrieved from the D-Wave’s QA, we perform
each of our experiments R times, where, due to the high computational cost, we favor small
values of R, such as R = 10 or R = 20.

Hence, Figure 5.9 depicts the evolution of the energy H with time for the frustrated system
of spins under consideration, with a temporary stagnation at energy levelH = −6. In particular,
Figures 5.9a and 5.9b highlight this phenomenon when SA and SQA are applied to the problem,
respectively. Moreover, it is worth mentioning that this arises within the first 2000 iterations.
Subsequently, the energy progressively decreases to its lowest-energy level H = −10.

If we now turn our attention to Figure 5.10, we recognise that the time-progression of the
Hamiltonian H is comparable to the one in Figure 5.9. The predominant contrast between the
two rests on where the energy level at which the system briefly stagnates occurs. Here, the local
minimum emerges at H = −8, rather than H = −6, both when SA and SQA are engaged. This
is illustrated in Figures 5.10a and 5.10b, respectively.

Critically, the most prevalent outcome we encounter in our simulations features the system
settling directly in its ground state. This is highlighted in Figures 5.11a and 5.11b, where
we apply both the SA and SQA approaches, respectively. Indeed, the two figures show the
Hamiltonian H starting at a random point, associated with random initial conditions for the
spins Si, i = 1, . . . , 8. Afterwards, the energy gradually decreases to the lowest-energy level
H = −10 within the first 103 iterations, without getting trapped in a local minimum.

Finally, we input the coupling values and the strength of the external magnetic field corre-
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(a) Ground state H = −10 with SA (b) Ground state H = −10 with SQA

Figure 5.11: Plot of the evolution of the energy H in time, with the system declining directly
to the global minimum H = −10.

Figure 5.12: D-Wave’s QA results for frustrated system of eight spins.

sponding to the configuration introduced at the beginning of this section in the sample ising

function on Leap and display the complete results in Figure 5.12. Perhaps not surprisingly, an
important remark highlighted in this figure is that the D-Wave’s QA struggles to find the global
minimum of this problem, even though the current system involves a relatively small number of
qubits, namely N = 8. In particular, the left-hand side of Figure 5.12 depicts the qubits on a
graph, where the white and blue edges indicate ferromagnetic and anti-ferromagnetic couplings,
respectively. The right-hand side of Figure 5.12 displays a histogram of the solutions identified
by the D-Wave’s QA, from which we can infer the corresponding probabilities. Thus, when
using tf = 50µs annealing time and 1000 runs, the global minimum H = −10 is found with a
probability of approximately 95%, the local minima H = −8 is encountered with a probability
of just above 5%, and the energy level H = −6 arises less than 1% of the time.

To summarise, in this section, we have first validated our integrators (3.51) and (3.67)
through various techniques. Subsequently, this allowed us to carry out diverse numerical exper-
iments with different ensembles of spins and contrast the outcomes with the solutions generated
with a physical quantum annealer, such as the one provided by D-Wave. As a cautious res-
olution, we can affirm that the two seem to produce comparable results, albeit more careful
investigations and analyses with larger systems are necessary.
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6 Conclusion and Future Work

6.1 Conclusion

6.1.1 Summary of Work

The study of quantum computers is motivated by the potential of such devices to revolu-
tionise the field of scientific computing. It is expected that, provided they can be implemented,
quantum computers will prove advantageous over classical computers, especially in the case of
combinatorial optimisation.

In this report, we began with a summary of a class of such problems: Quadratic Uncon-
strained Binary Optimisation (QUBO). They can be linked to statistical mechanics by being
written in the form of the Ising model and compared to a minimisation problem. This link was
exploited previously in the case of simulated annealing as a heuristic algorithm for the approx-
imate solution of NP-complete problems. We then continued, by analogy, to the concept of
quantum annealing as a potentially faster route to such solutions. We discussed the mathemat-
ical foundations, noting that many results have been produced in great generality, but there are
still unknowns regarding specific cases of optimisation problems. In the worst case scenarios,
complexity will still grow exponentially with the size of the problem, as detailed in Section 2.6.

Section 3.3 introduced the classical model of the quantum system we aimed to simulate, i.e.
the Heisenberg Hamiltonian under Langevin Dynamics. The rest of this section presented the
main contribution of this project, namely two norm-preserving integrators based on splitting
methods. Then, Section 4 explained how quantum annealing is implemented on D-Wave’s
machine, how we interact with the it via the IDE, and which control parameters are accessible
to the user.

Finally, in Chapter 5, we used the previously mentioned integrators to obtain trajectories
of spins and simulate the annealing process. This allowed us to compare our results with
computations performed on D-Wave’s quantum annealer by means of the IDE. In addition, we
validated our method both mathematically and experimentally, and carried out simulations of
a frustrated system, indicating signs of meta-stability in the relaxation of energy.

6.2 Future Work

6.2.1 Implementation in C or C++

Our prototypical code was written in Python, however, for large scale simulations, the current
implementation is prohibitively slow. In order to proceed, we will need to translate the algo-
rithm into a more efficient language such as C or C++, and potentially make use of HPC and
parallelisation. Towards the end of this project, we came close to an analytic solution to a
system of two coupled spins (see appendix A.4). Were we able to solve this, it is possible that
the implementation will improve the accuracy of the integrator for large systems by decreasing
the number of splittings needed. Parallel computing seems natural in this context since, by
splitting the equations as was discussed in 3.3.5, we arrive at N independent sets of equations
to solve. Solving these in parallel before composing the maps may be more efficient.

6.2.2 Compare Simulations to D-Wave Data

We wish to explore the similarity of our simulations to real data produced using LEAP, the
D-Wave IDE. Ideally, we would run a large number of simulations and compare the resulting
statistics to the D-Wave data, however, D-Wave provides only one free minute every month,
making careful comparisons difficult. Greater access to the system would be a considerable
advantage. It is still an unknown whether details of the relaxation process can be returned
via the D-Wave IDE. This would also be of great interest. These comparisons are especially
fascinating in the case of frustrated systems. Relevant examples for such systems are spin
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glasses which have many meta-stable phases [Zam10] and degenerate ground states [KGV83].
As shown in Section 5.2.2, frustrated systems can pose challenges for the D-Wave machine as it
freezes in a meta-stable state on some runs. It would be interesting to compare the annealing
schedules discussed in Sections 2.5 and 2.6 to the results obtained using the D-Wave machine
in order to have a better understanding about the effects of the annealing time on the results.

6.2.3 Explore the Formation of Topological Defects

Related to the existence of phase transitions and meta-stability is the concept of topological
defects. They represent a collection of neighbouring particles for which the angle θ, specifying
the direction of the spin, changes by 2π in one circuit of any closed contour enclosing the core
of the vortex located at the origin. In the setting of a Heisenberg magnet this is known as a
hedgehog defect, as shown in Figure 6.1. In short, when the transverse field is decreased, it is

Figure 6.1: Hedgehog defect in 3D, the vectors are normal to the sphere, all either inward or
outward [NS18].

expected that a critical point is attained where the relaxation time diverges [Suz09]. For the
Heisenberg model, this divergence generates quantum phase transition from the paramagnetic
to the (anti)-/ferromagnetic state. Hence, the formation of topological defects or “kinks” occurs
in the final state. In [Sub+21], the statistics of defects is studied using the kink-number operator
[Dzi05]:

N =
1

2

N−1∑
i=1

(1− σz
i σ

z
i+1). (6.1)

Unfortunately, this operator is specifically devised for quantum Ising models, so more investiga-
tion is needed to find a suitable operator for the quantum Heisenberg model. The Kibble-Zurek
Mechanism (KZM) [Kib76], [Kib80], [Zur85], [Zur96] is the theory used to describe the forma-
tion of topological defects as a system goes through a phase transition. It essentially states that
the average number of kinks scales as a function of the annealing time ta :

E[N ] ∼ t−αKZM
a , (6.2)

where αKZM = dν/(1+zν) is the KZM critical exponent for d-dimensional and point-like defects.
The values the critical exponents ν and z can potentially take are discussed in [Sub+21]. As
suggested in [Sub+21], Eq. (6.2) is a suitable metric to assess the performance of a quantum
annealer.
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[GS22] Wālther Gerlāch and Otto Stern. “Der experimentelle Nachweis der Richtungsquan-
telung im Magnetfeld”. In: Zeitschrift für Physik 9 (1922), pp. 349–352.

[Haj88] Bruce Hajek. “Cooling Schedules for Optimal Annealing.” In: Mathematics of Op-
erations Research 13.2 (1988), pp. 311–329. issn: 0364-765X. doi: 10.1287/moor.
13.2.311.

[Hal03] B.C. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduc-
tion. Graduate Texts in Mathematics. Springer, 2003. isbn: 9780387401225.

[Hod89] Hardy M Hodges. “Formation of topological defects in phase transitions”. In: Phys-
ical Review D 39.12 (1989), p. 3557.

[HS05] Naomichi Hatano and Masuo Suzuki. “Finding Exponential Product Formulas of
Higher Orders”. In: Quantum Annealing and Other Optimization Methods. Ed. by
Arnab Das and Bikas K. Chakrabarti. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2005, pp. 37–68. isbn: 978-3-540-31515-5. doi: 10.1007/11526216_2.

[Joh90] David S. Johnson. “A Catalog of Complexity Classes”. In: Algorithms and Com-
plexity. Elsevier, 1990, pp. 67–161. doi: 10.1016/b978-0-444-88071-0.50007-2.

[Kat50] Tosio Kato. “On the Adiabatic Theorem of Quantum Mechanics”. In: Journal of the
Physical Society of Japan 5.6 (Nov. 1950), pp. 435–439. doi: 10.1143/jpsj.5.435.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by simulated anneal-
ing”. In: Science 220.4598 (1983), pp. 671–680.

41

https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1088/0305-4608/5/5/017
https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1287/moor.13.2.311
https://doi.org/10.1287/moor.13.2.311
https://doi.org/10.1007/11526216_2
https://doi.org/10.1016/b978-0-444-88071-0.50007-2
https://doi.org/10.1143/jpsj.5.435


[Kib76] T W B Kibble. “Topology of cosmic domains and strings”. In: Journal of Physics
A: Mathematical and General 9.8 (Aug. 1976), pp. 1387–1398. doi: 10.1088/0305-
4470/9/8/029.

[Kib80] T.W.B. Kibble. “Some implications of a cosmological phase transition”. In: Physics
Reports 67.1 (1980), pp. 183–199. issn: 0370-1573. doi: https://doi.org/10.
1016/0370-1573(80)90091-5.

[KN98] Tadashi Kadowaki and Hidetoshi Nishimori. “Quantum annealing in the transverse
Ising model”. In: Physical Review E 58.5 (Nov. 1998), pp. 5355–5363. doi: 10.1103/
physreve.58.5355.

[Koc+14] Gary Kochenberger et al. “The unconstrained binary quadratic programming prob-
lem: a survey”. In: Journal of Combinatorial Optimization 28.1 (July 2014), pp. 58–
81. issn: 1382-6905, 1573-2886. doi: 10.1007/s10878-014-9734-0. (Visited on
12/14/2021).

[KS20] Mariia Karabin and Steven J. Stuart. Simulated Annealing with Adaptive Cooling
Rates. 2020. arXiv: 2002.06124 [physics.chem-ph].

[KT15] H. Kawamura and T. Taniguchi. Chapter 1 - Spin Glasses. Ed. by K.H.J. Buschow.
Vol. 24. Handbook of Magnetic Materials. Elsevier, 2015, pp. 1–137. doi: https:
//doi.org/10.1016/bs.hmm.2015.08.001.

[KT85] S. Kirkpatrick and G. Toulouse. “Configuration space analysis of travelling salesman
problems”. In: Journal de Physique 46.8 (1985), pp. 1277–1292. issn: 0302-0738. doi:
10.1051/jphys:019850046080127700. (Visited on 12/14/2021).

[Lak11] M. Lakshmanan. “The fascinating world of the Landau-Lifshitz-Gilbert equation:
an overview”. In: Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences (2011). doi: 10.1098/rsta.2010.0319.

[LK73] S. Lin and B. W. Kernighan. “An Effective Heuristic Algorithm for the Traveling-
Salesman Problem”. In: Operations Research 21.2 (Apr. 1973), pp. 498–516. issn:
0030-364X, 1526-5463. doi: 10.1287/opre.21.2.498. (Visited on 12/13/2021).

[LL92] L. Landau and E. Lifschitz. “3 - On the theory of the dispersion of magnetic perme-
ability in ferromagnetic bodies. Reprinted from Physikalische Zeitschrift der Sow-
jetunion 8, Part 2, 153, 1935.” In: Perspectives in Theoretical Physics. Ed. by L.P.
Pitaevski. Amsterdam: Pergamon, 1992, pp. 51–65. isbn: 978-0-08-036364-6. doi:
https://doi.org/10.1016/B978-0-08-036364-6.50008-9.

[LM16] Ben Leimkuhler and Charles Matthews. Molecular Dynamics. Springer, 2016.

[MD11] Pui-Wai Ma and S. L. Dudarev. “Langevin spin dynamics”. In: Phys. Rev. B 83 (13
Apr. 2011), p. 134418. doi: 10.1103/PhysRevB.83.134418.

[Met+53] Nicholas Metropolis et al. “Equation of State Calculations by Fast Computing Ma-
chines”. In: The Journal of Chemical Physics 21.6 (June 1953), pp. 1087–1092. doi:
10.1063/1.1699114.

[MLM21] Ari Mizel, D. A. Lidar, and M. W. Mitchell. “Erratum: Simple Proof of Equivalence
between Adiabatic Quantum Computation and the Circuit Model [Phys. Rev. Lett.
99, 070502 (2007)]”. In: Phys. Rev. Lett. 127 (13 Sept. 2021), p. 139901. doi: 10.
1103/PhysRevLett.127.139901.

[MN08] Satoshi Morita and Hidetoshi Nishimori. “Mathematical foundation of quantum
annealing”. In: Journal of Mathematical Physics 49.12 (Dec. 2008), p. 125210. doi:
10.1063/1.2995837.

42

https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/https://doi.org/10.1016/0370-1573(80)90091-5
https://doi.org/https://doi.org/10.1016/0370-1573(80)90091-5
https://doi.org/10.1103/physreve.58.5355
https://doi.org/10.1103/physreve.58.5355
https://doi.org/10.1007/s10878-014-9734-0
https://arxiv.org/abs/2002.06124
https://doi.org/https://doi.org/10.1016/bs.hmm.2015.08.001
https://doi.org/https://doi.org/10.1016/bs.hmm.2015.08.001
https://doi.org/10.1051/jphys:019850046080127700
https://doi.org/10.1098/rsta.2010.0319
https://doi.org/10.1287/opre.21.2.498
https://doi.org/https://doi.org/10.1016/B978-0-08-036364-6.50008-9
https://doi.org/10.1103/PhysRevB.83.134418
https://doi.org/10.1063/1.1699114
https://doi.org/10.1103/PhysRevLett.127.139901
https://doi.org/10.1103/PhysRevLett.127.139901
https://doi.org/10.1063/1.2995837


[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. 10th. USA: Cambridge University Press,
2011. isbn: 1107002176.

[NN96] Hidetoshi Nishimori and Yoshihiko Nonomura. “Quantum Effects in Neural Net-
works”. In: Journal of the Physical Society of Japan 65.12 (Dec. 1996), pp. 3780–
3796. doi: 10.1143/jpsj.65.3780.

[NS18] Lynn Nadel and Daniel I. Stein. 1990 Lectures in Complex Systems. Ed. by Lynn
Nadel and Daniel L. Stein. CRC Press, Oct. 2018. doi: 10.1201/9780429503573.

[RHC18] Dina Razafindralandy, Aziz Hamdouni, and Marx Chhay. “A review of some geo-
metric integrators”. In: Advanced Modeling and Simulation in Engineering Sciences
5.1 (June 2018), p. 16. issn: 2213-7467. doi: 10.1186/s40323-018-0110-y.

[Sel+09] W. Selke et al. “Classical and quantum anisotropic Heisenberg antiferromagnets”.
In: Condensed Matter Physics 12 (2009), pp. 547–558.

[Shi+14] Seung Woo Shin et al. How “Quantum” is the D-Wave Machine? Jan. 2014. arXiv:
1401.7087 [quant-ph].

[SK75] David Sherrington and Scott Kirkpatrick. “Solvable Model of a Spin-Glass”. In:
Phys. Rev. Lett. 35 (26 Dec. 1975), pp. 1792–1796. doi: 10.1103/PhysRevLett.35.
1792.

[Son+97] S. L. Sondhi et al. “Continuous quantum phase transitions”. In: Reviews of Modern
Physics 69.1 (Jan. 1997), pp. 315–333. doi: 10.1103/revmodphys.69.315.

[Sub+21] David Subires et al. Benchmarking Quantum Annealing Dynamics: the Spin-Vector
Langevin Model. 2021. arXiv: 2109.09750v2 [quant-ph].

[Suz09] Sei Suzuki. “A comparison of classical and quantum annealing dynamics”. In: Jour-
nal of Physics: Conference Series 143 (Jan. 2009), p. 012002. doi: 10.1088/1742-
6596/143/1/012002.

[The+17] T. Theurer et al. “Resource Theory of Superposition”. In: Phys. Rev. Lett. 119 (23
Dec. 2017), p. 230401. doi: 10.1103/PhysRevLett.119.230401.

[TKL04] Shan-Ho Tsai, M. Krech, and D. Landau. “Symplectic Integration Methods in Molec-
ular and Spin Dynamics Simulations”. In: Brazilian Journal of Physics 34 (June
2004), pp. 384–391. doi: 10.1590/S0103-97332004000300009.
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A Appendices

A.1 Appendix 1

Equation (3.36), namely:

S̈y = −Sx(0)d1Ṡ
z = − (Sx(0)d1)

2 Sy, (A.1)

can be solved by first computing the roots of the associated characteristic equation:

λ2 + (Sx(0)d1)
2 = 0. (A.2)

These are given by λ± = ±iSx(0)d1, so that the solution to the ODE (A.1) is:

Sy(t) = c1 sin (d1S
x(0)t) + c2 cos (d1S

x(0)t) . (A.3)

Imposing the initial condition on Sy yields:

Sy(0) = c2. (A.4)

From Eq. (3.35), we also have the initial condition Ṡy(0) = −d1S
x(0)Sz(0), which gives:

− c1d1S
x(0) = −d1S

x(0)Sz(0) =⇒ c1 = Sz(0). (A.5)

This gives the complete solution:

Sy(t) = Sz(0) sin (d1S
x(0)t) + Sy(0) cos (d1S

x(0)t) . (A.6)

A.2 Appendix 2

The solution to Eq. (3.41), namely:

u̇x = 2γd1u
x (1− ux) , (A.7)

can be found by using partial fractions, as follows:∫ ux

ux(0)

(
1

v
+

1

1− v

)
dv = 2γd1

∫ t

0
dt′, (A.8)

which, upon rewriting, gives:

ln

∣∣∣∣ ux

1− ux

∣∣∣∣− ln

∣∣∣∣ ux(0)

1− ux(0)

∣∣∣∣ = 2γd1t. (A.9)

Since ux + uy + uz = 1, we have that uα < 1, ∀t, for α ∈ {x, y, z}, so that the quantities inside
the absolute values are positive. Thus:

ux

1− ux
=

ux(0)

1− ux(0)
exp(2γd1t), (A.10)

and letting R := ux(0)/(1− ux(0)), we obtain:

ux(t) =
R exp(2γd1t)

1 +R exp(2γd1t)
. (A.11)
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Further, to solve Eq. (3.43), namely:∫ uy

uy(0)

1

v
dv = −2γd1

∫ t

0
uxdt′ = −2γd1

∫ t

0

R exp(2γd1t)

1 +R exp(2γd1t)
dt′, (A.12)

we need only compute the integral on the RHS. This can be achieved by substituting w =
1 +R exp(2γd1t), so that dw = 2γd1R exp(2γd1t). Hence, the integral becomes:∫ 1+R exp(2γd1t)

1+R

1

w
dw, (A.13)

and substituting into Eq. (A.12) gives:

ln

∣∣∣∣ uy

uy(0)

∣∣∣∣ = − ln

∣∣∣∣1 +R exp(2γd1t)

1 +R

∣∣∣∣ . (A.14)

Using the fact that w > 0 and uy > 0, ∀t, we obtain the following solution for uy:

uy(t) = uy(0)
1 +R

1 +R exp(2γd1t)
. (A.15)

A.3 Appendix 3

The solution to Eq. (3.34), namely:

dS =
√
ηS × dW, (A.16)

can be found by further manipulation of Eq. (3.46) given by:

R′(t)S(0)dt =
√
η skew(dW (t))R(t)S(0). (A.17)

In particular, multiplying both sides by R−1(t) yields:

R′(t)R−1(t)dt =
√
η skew(dW (t)). (A.18)

Furthermore,
d logR(t) =

√
η skew(dW (t)). (A.19)

Integrating both sides and exponentiating, we obtain the following:

R(t) = e
√
η
∫ t
0 skew(dW (s))

= e
√
η skew(

∫ t
0 dW (s))

= e
√
η skew(W (t))

= e
√
η
√
t skew(W (1)). (A.20)

Here, in the second equality we used that the skew-symmetric operator is linear, while in the
last equality the Itô integral

∫ t
0 dW (s) is just the 3-dimensional Brownian motion

√
tW (1) where

each component Wα(1) ∼ N(0, 1) for α ∈ {x, y, z}. Therefore,

S(t) = S(0)e
√
η
√
t skew(W (1)). (A.21)

Further, we take ω =
(
ω1, ω2, ω3

)T
and Ω as in Section 3.3.4. Using Ω3 = −Ω, by the
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general formula for the matrix exponential [Hal03], we have that:

e
√
ηtΩ = I3 +

√
ηtΩ+

1

2!
ηtΩ2 +

1

3!
(ηt)

3
2Ω3 +

1

4!
(ηt)2Ω4 + ...

= I3 +
√
ηtΩ+

1

2!
ηtΩ2 − 1

3!
(ηt)

3
2Ω− 1

4!
(ηt)2Ω2 − ...

= I3 +

( ∞∑
k=0

(−1)k(
√
ηt)2k+1

(2k + 1)!

)
Ω+

(
−

∞∑
k=1

(−1)k(
√
ηt)2k

(2k)!

)
Ω2

= I3 +

( ∞∑
k=0

(−1)k(
√
ηt)2k+1

(2k + 1)!

)
Ω+

(
1−

∞∑
k=0

(−1)k(
√
ηt)2k

(2k)!

)
Ω2

= I3 + sin(
√
ηt)Ω +

(
1− cos(

√
ηt)
)
Ω2. (A.22)

Finally, the solution to Eq. (A.16) is therefore:

S(t) = S(0)
(
I3 + sin(

√
ηt)Ω +

(
1− cos(

√
ηt)
)
Ω2
)
. (A.23)

A.4 Appendix 4

The solution to Eq. (3.56), namely:{
Ṡi = −1

2JijSi × Sj − 1
2JijγSi × (Si × Sj)

Ṡj = −1
2JjiSj × Si − 1

2JjiγSj × (Sj × Si),
(A.24)

can be derived as follows. Using the triple product formula for the cross product, we have:

Si × (Si × Sj) = Si(Si · Sj)− Sj(Si · Si) = Si(Si · Sj)− Sj (A.25)

and
Sj × (Sj × Si) = Sj(Sj · Si)− Si(Sj · Sj) = Sj(Sj · Si)− Si (A.26)

since Si · Si = Sj · Sj = 1. If we denote w = Si · Sj , and apply the Leibniz rule for the dot
product, we get ẇ = Ṡi ·Sj+Si · Ṡj . Noting that Sj ·(Si×Sj) = Si ·(Sj×Si) = 0, and combining
both equations we arrive at:

ẇ = −Jijγ(w
2 − 1) (A.27)

since Jij = Jji. This leads to: ∫ w

w(0)

du

u2 − 1
= −Jijγ

∫ t

0
dt′. (A.28)

If we write:
1

u2 − 1
=

1

2

(
1

u− 1
− 1

u+ 1

)
, (A.29)

then we observe the anti-derivative of the logarithm in the integral on the left-hand side, and
therefore we finally arrive at:

w(t) =
1−K exp(−2Jijγt)

1 +K exp(−2Jijγt)
, (A.30)

where K := (1− w(0))/(1 + w(0)). Using the relations above, we can further write (3.56) as:{
Ṡi = −1

2JijSi × Sj − 1
2Jijγ(Si(Si · Sj)− Sj)

Ṡj = −1
2JjiSj × Si − 1

2Jjiγ(Sj(Sj · Si)− Si).
(A.31)
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Adding these two equations and using the fact that Si × Sj = −Sj × Si gives:

u̇ = −1

2
Jijγu(w − 1), (A.32)

where u(t) := Si(t) + Sj(t). This leads to:∫ u

u(0)

dr

r
= −1

2
Jijγ

∫ t

0
(w(t′)− 1)dt′. (A.33)

Hence,

u(t) = u(0)

(
1 +K

1 +K exp (−2Jijγt)

)1/2

. (A.34)

One could now, for example, use the first equation in (A.31) and it reduces to:

Ṡi = −1

2
JijSi × u− 1

2
Jijγ((1 + w)Si − u). (A.35)

We believe that this equation is analytically integrable, but we have not yet found a way to
integrate it.

A.5 Appendix 5

The solution to equation (3.59), namely:

Ṡx
i =

1

2
JijγS

x
j (0)

(
1− (Sx

i )
2
)
, (A.36)

can be solved by taking 1− (Sx
i )

2 to the left-hand side and separating into partial fractions:

1

2

∫ Sx
i

Sx
i (0)

(
1

1− v
+

1

1 + v

)
dv =

1

2
JijγS

x
j (0)

∫ t

0
dt′, (A.37)

which, upon rewriting, gives:

ln

∣∣∣∣1 + Sx
i

1− Sx
i

∣∣∣∣− ln

∣∣∣∣1 + Sx
i (0)

1− Sx
i (0)

∣∣∣∣ = JijγS
x
j (0)t. (A.38)

Since ∥Si∥ = 1, we have that Sx
i < 1, ∀t, and ∀i, so that the quantities inside the absolute

values are positive. Thus:

1 + Sx
i

1− Sx
i

=
1 + Sx

i (0)

1− Sx
i (0)

exp(JijγS
x
j (0)t), (A.39)

and letting M := (1 + Sx
i (0))/(1− Sx

i (0)), we obtain:

Sx
i (t) =

M exp(JijγS
x
j (0)t)− 1

M exp(JijγSx
j (0)t) + 1

. (A.40)

Further, to solve (3.63), namely:

˙(
Sy
i

Sz
i

)
= −1

2
JijS

x
j (0)

(
1 +

(
Sy
i

Sz
i

)2
)
, (A.41)
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we set v(t) := Sy
i (t)/S

z
i (t), and obtain:∫ v

v(0)

dw

1 + w2
= −1

2
JijS

x
j (0)

∫ t

0
dt′. (A.42)

On the left-hand side we recognize the anti-derivative of arctan(·), and so:

arctan

(
v − v(0)

1 + vv(0)

)
= −1

2
JijS

x
j (0)t. (A.43)

Applying tan(·) to both sides and solving for v(t), we finally arrive at:

v(t) =
v(0) cos

(
1
2JijS

x
j (0)t

)
− sin

(
1
2JijS

x
j (0)t

)
cos
(
1
2JijS

x
j (0)t

)
+ v(0) sin

(
1
2JijS

x
j (0)t

) , (A.44)

where we have used the fact that tan(·) is an odd function.
Finally, we solve (3.65), namely:

Ṡz
i =

1

2
Jijg(t)S

z
i S

x
j (0)−

1

2
JijγS

x
i S

z
i S

x
j (0), (A.45)

by taking Sz
i on the left-hand side and integrating:∫ Sz

i

Sz
i (0)

dw

w
=

1

2
JijS

x
j (0)

∫ t

0
g(r)dr − 1

2
JijγS

x
j (0)

∫ t

0
Sx
i (r)dr. (A.46)

The numerator of g is exactly the derivative of the denominator with respect to r up the constant
in front of the corresponding integral, and so:

1

2
JijS

x
j (0)

∫ t

0
g(r)dr = ln

(
cos

(
1

2
JijS

x
j (0)t

)
+ v(0) sin

(
1

2
JijS

x
j (0)t

))
. (A.47)

Upon manipulation, the second integral becomes:

−1

2
JijγS

x
j (0)

∫ t

0
Sx
i (r)dr = −1

2
JijγS

x
j (0)

∫ t

0

(
1− 2

M exp(JijγSx
j (0)r) + 1

)
dr (A.48)

= −1

2
JijγS

x
j (0)t−

∫ t

0

−JijγS
x
j (0) exp(−JijγS

x
j (0)r)

M + exp(−JijγSx
j (0)r)

dr (A.49)

= −1

2
JijγS

x
j (0)t− ln

(
M + exp(−JijγS

x
j (0)r)

M + 1

)
. (A.50)

Finally, ∫ Sz
i

Sz
i (0)

dw

w
= lnSz

i − lnSz
i (0), (A.51)
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and combining everything together yields:

Sz
i (t) = Sz

i (0) exp(−
1

2
JijγS

x
j (0)t)

1 +M

M + exp(−JijγSx
j (0)t)

cos

(
1

2
JijS

x
j (0)t

)
+ v(0) sin

(
1

2
JijS

x
j (0)t

)
(A.52)

= Sz
i (0)

1 +M

exp(−1
2JijγS

x
j (0)) +M exp(12JijγS

x
j (0))

(
cos

(
1

2
JijS

x
j (0)t

)
+ v(0) sin

(
1

2
JijS

x
j (0)t

))
.

(A.53)

A.6 Appendix 6

Theorem A.1. [Bir31] For a measurable flow (Tt)t≥0 in a σ-finite measure space (X,Σ, µ),
and for any function f ∈ L1(X,Σ, µ), if µ(X) < ∞, then:

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =
1

µ(X)

∫
fdµ. (A.54)

A.7 Appendix 7

If we consider the rigid-body Hamiltonian H = 1
2S ·DS, then:

⟨H⟩ρβ =
3

2
T, (A.55)

where ⟨·⟩ρβ denotes the average with respect to the stationary distribution ρβ. The general
form of the Fokker-Planck equation [LM16] is:

dρ

dt
= L+ρ. (A.56)

For the Langevin equation (3.4), setting η := 2γβ−1, where β = 1/(kBT ) we obtain that:

L+ρ = −∇ · {S ×∇SHρ+ γS × (S ×∇SH) ρ} − γβ−1
∑

i,j∈{x,y,z}

∂2

∂Si∂Sj
(bijρ), (A.57)

where

B := (bij) = Ŝ2 and Ŝ = skew(S) =

 0 Sz −Sy

−Sz 0 Sx

Sy −Sx 0

 . (A.58)

We observe that L+e−βH = 0, and so ρβ = e−βH is the stationary distribution restricted to the
unit sphere. Hence, by Stokes’ Theorem, since ∂S2 = 0, it follows that:∫

S2

S · ∇He−βHdσS2 =
1

β

∫
S2

(∇ · S)e−βHdσS2 =
3

β

∫
S2

e−βHdσS2 , (A.59)

because ∇ · S = 3, and hence:

⟨S · ∇H⟩ρβ =
3

β
, (A.60)

or, equivalently:

⟨H⟩ρβ =
3

2
T, (A.61)

where we assume that Boltzmann’s constant kB = 1.
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