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Preface

The goal of this dissertation was to prove the equality of two metrics introduced to

quantify distances between probability distributions defined on the countable product

of compact Polish spaces. All together there are eight sections.

In the first section I provide context for the rest of dissertation, this includes back-

ground information describing the motivation for undertaking this project.

In the second section I introduce preliminary mathematical definitions, including

what we call Steif’s and Dobrushin’s metrics, and state informally the main result. The

third section is an explicit example of the calculation of distance between two stationary

distributions using Dobrushin’s metric.

The fourth section states the Kantorovich Duality, which is a generalization of the

Kantorovich Rubinstein theorem. The proof of this duality is the basis for the main

result in this dissertation.

Section five develops the “Dobrushin-Steif” duality with an informal analogy from

information theory. Then the result is proven, following closely (but extending upon

where necessary) the proof of the Kantorovich Rubinstein Theorem.

The bibliography details my use of the references, explaining which reference was

used for each result.

Finally, there is an appendix where it is shown that Steif’s metric is a complete

metric on P(X ).

I would like to thank my advisor Professor Robert MacKay for giving me the chance

to attempt this problem as well as his encouragement and feedback. I should also thank

Dr Marie-Therese Wolfram for giving me the opportunity to explain some of my ideas.
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1 Context

In this section I will briefly and informally introduce some ideas that provide context

for the main result.

1.1 Interacting Particle Systems (IPS)

1.1.1 Origins, Motivations and Informal Definitions.

The precursors to the study of IPS can be traced back to the works of Russian cybernet-

icist M.L. Tsetlin in the 1960’s when he studied cellular automata1 in random media.

Along with Tsetlin, I.M. Gelfand wrote about the importance of new mathematical

techniques to model collective behavior. This in turn inspired R.L. Dobrushin who was

a statistical mechanic whith an interest in information theory and signal propagation

in uncertain media. At around the same time (Late 1960’s) in the USA, probablist F.

Spitzer also began studying interacting Markov processes which eventually became the

theory of IPS. Dobrushin and Spitzer can well be regarded as the founding fathers of

this branch of probability.

Informally, Interacting particle systems are Markov processes (stochastic process

with independent increments), in continuous or discrete time, which describe ‘particles’

moving in some underlying discrete space, subject to some random noise and interac-

tions. Foundational results such as existence and uniqueness were quickly laid down by

the mid-seventies, but it turned out to be extraordinarily hard to analyse many prop-

erties of these systems and as a result, many problems that are simple to state resisted

attempts at solution. It seems that early motivations for studying IPS were the mod-

eling of biological phenomena (e.g neurons) and statistical mechanics (e.g crystalline

substances). However since then, similar problems have arisen naturally throughout
1Historically cellular automata came first but mathematically they fit into the framework of IPS so

are defined later in the text.
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the sciences such as the behavior of financial markets, computer networks and traffic

flows - the abstract framework seems to have promoted it’s broadening application and

the discrete time version (probabilistic cellular automata or PCA) turned out to be im-

portant computational tools. IPS, despite their seeming simplicity, are incredibly good

at capturing subtle aspects of phenomena and often making the model more realistic

does little to change the overall behavior of the model. But how do we investigate the

behavior of such systems?

1. Limiting Behavior: Existence and uniqueness of invariant measures (limit points

as time extends indefinitely);

2. Attractor Basins: second is whether and how fast these invariant distributions

attract other initial probability measures - we can classify initial distributions

according to their attractors;

3. Dependence of answers to the above quetions on specific parameters: Qualitative

changes in large scale macroscopic behavior depending on the system parameters

are often known as phase transitions, and are of particular interest;

4. Classification: Universality classes (collections of systems that share asymptotic

behavior and critical exponent2) are part of a pervasive philosophy3 in the study

of IPS.

1.1.2 Probabilistic Cellular Automata (PCA)

Probabilistic cellular automata are the discrete time version of interacting particle sys-

tems. PCA are particularly important to the present discussion as the study of such

systems is the precise context that gives rise to the importance of the main result.
2Critical exponents describe the behavior of physical quantities near phase transitions.
3It is generally believed but not rigorously proven that such universality classes exist.
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Cellular Automata (CA) are lattices of interconnected countable-state sites or cells

which evolve synchronously in discrete time steps according to deterministic rules in-

volving the states of adjacent automata. They are an interesting example of a dynamical

system with simple rules that can display rich and complex long term behavior.

PCA are the stochastic extension of such entities where each site is updated ac-

cording to the probability distribution defined by the values of its neighbors. Mathem-

atically they are interacting Markov chains evolving in a parallel but locally coupled

fashion4. PCA are defined on lattices, each vertex representing a site. The topology of

the lattice determines the viable links between vertices which can be interpreted as a

route of communication between sites. The influence of communication between sites

decays as the distance (depending on the topology of the space) increases - hence we

consider a neighborhood of dependence between sites.

One of the things of greatest interest in the study of PCA are phase transitions,

these occur as you change the macroscopic variables of a system and manifest as abrupt

changes in the properties of the system. Physical examples are changes from liquid

to gas or solid. There are two classifications of phase transitions, first and second-

order, of which we will discuss only the former. First order phase transitions have

coexistence curves - i.e more than one possible limiting measures. For instance if the

right combination of pressure and temperature is met then water can exist as either

liquid or ice depending on how those conditions where reached.

Metastability can be thought of as a barrier delaying convergence, an apparent state

of equilibrium in contrast to the expected limiting behavior of the system under the

given parameters. A system exhibits metastability in the vicinity of first order phase

transitions. A metastable state is one that a system may occupy for a large amount

of time but is different from the true equilibrium of the system. For instance it was
4See definition of coupling in subsection 2.2.
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mentioned before that if the correct combination of pressure and cooling is applied

to water in a very smooth fashion then it may continue as a liquid even below zero,

however it cannot do this indefinitely - its only true equilibrium state under these

conditions is as a solid. So metastability can be described as the persistence of a

system in a state other than the one described by an invariant measure with respect

to the parameters of the system. Normally the presence of external noise or internal

fluctuations cause the system to jump into the equilibrium state after some time has

passed. Metastability relates to some attempts at quantifying emergence, for instance

in (MacKay & Diakonova, 2011).

1.1.3 Emergence and Complexity

Emergence as a concept is the tendency of large interacting networks of participants,

whose individual behaviour may be deterministic or non-deterministic, to produce

macro-scale or approximately network wide synergy. That is, the system displays

emergence if the interactions of its participants produce behaviour not reducible to

the rules governing individual participants. In more mathematical terms one may say

that this kind of emergence (which we call weak) is quantified as the distance of the

probability distribution describing the entire system from the product of the probability

distributions of the participants. Non-trivial emergence of collective behaviour can also

manifest as phase transitions and produce metastable states. Existence of the meta-

stable states we refer to as strong emergence and can be quantified as the diameter of

the set of space-time phases. One may seek to find cases of metastable states that are

the result of systematic behavior not reducible to the rules governing individual actions

- i.e emergence that is both strong and weak.

Broadly speaking a complex system is one that displays self organization and emer-

gence in the absence of global control. Swarms of insects, nervous systems of animals
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and financial markets are all examples and yet, despite their ubiquity in nature, there

is so far not an adequate mathematical framework uniting these phenomena.

The main advantage of introducing the metrics described in this project (and pre-

viously in (MacKay, 2011) and (MacKay, 2018) ) is that they act appropriately as

a quantification of distance on large finite or even infinite IPS with large neighbour-

hoods of dependence. While other metrics on such distributions, for example absolute

variation, fail to converge (see section 2 in (MacKay, 2011) these metrics capture the

intuitive notions we have about the closeness of such distributions. This allows us to

study the behaviour of complex systems, testing for properties like ergodicity, quantify

the concept of emergence and hence aid in classifying complex dynamical systems.

2 Mathematical Setting & Key Result

In this section, after introducing the necessary definitions, I formulate PCA more pre-

cisely. After this formulation there is a description of the NEC voter model PCA, which

is the subject of the calculation in section 3. Finally I state the definitions of Steif’s

and Dobrushin’s Metrics and briefly explain what I plan to do in the main section 5.

Definition 1 (Probability Space). A probability space is a triple (Ω,F , P ), where Ω

is a sample space, F denotes a σ−field consisting of subsets of Ω and P : F → [0, 1]

is a probability measure. The sample space, Ω can be thought of as a set of results

corresponding to all possible outcomes of a random experiment. The σ−field F is called

the event space. P : F → [0, 1] is a countably additive function, i.e. if {Ai}i∈N ⊂ F is

a countable collection of pairwise disjoint sets, then

P (∪∞
i=1Ai) =

∞∑
i=1

P (Ai).
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P assigns to each event a probability between 0 and 1 such that P (Ω) =
∫
Ω
dP = 1.

Definition 2 (Markov Process). The sequence of random variables {Xn}n∈N is called

a Discrete time Markov chain if it has the Markovian property

P (Xn+1 = j|X0 = i0, X1 = i1, ..., Xn = i) = P (Xn+1 = j|Xn = i) = Pij.

Where n represents the present step, and n + 1 represents the step following step

n. The probability Pij can be interpreted as the probability that the Markov chain will

be in state j at step n+ 1 given that is is in state i at step n.

Then next definition is required to understand how PCA evolve in discrete time,

which is what will be explained in the next subsection.

Definition 3 (Markov Transition Probability Matrix). For a discrete time Markov

chain with statespace S = {1, ..., K},

P =


P00 · · · P0K

... Pij
...

PK0 · · · PKK


is the one-step transition probability matrix. Here Pij is the one-step transition

probability for transition from state i to state j, and
∑

j∈S Pij = 1 ∀i ∈ S.

2.1 Mathematical Description of PCA

A graph G = (V,E) consists of two sets V and E. The elements of V are called

the vertices and the elements of E the edges of G. Each edge corresponds to a pair

of vertices which we say are adjacent. If two vertices s and t are adjacent we write

10



s ∼ t. Consider the graph G = (S,E) in which the set of vertices S represents the

locations of the automaton (sites) and is a countable (but potentially infinite) set. The

edge set E defines the topology of the space and can be thought of as representing

communication channels between the sites. Denote by A the “universal state-space”,

this is the set of values from which we draw the state-space at each site. The local

state-space (state-space of s ∈ S) Xs is a subset of A, the state-space may be different

at each site. Now define the configuration space as X =
∏

sXs, this represents the set of

all possible configurations and has the product topology. We will denote configurations

by x = (xs)s∈S or y = (ys)s∈S. Each site has a neighbourhood of interactions defined

by E and we denote this by Ts where Ts = {t ∈ S : t ∼ s}.

The updating rule is defined by a Markov transition probability kernel in discrete

time. If S and Xs are finite then the kernel can be written as P (y|x), interpreted as

the probability that the configuration at time t+ 1 is y given that the configuration at

time t is x. A PCA then corresponds to the transition of the form

P (y|x) =
∏
s∈S

ps(ys|xTs)

where {ps(·|xTs), s ∈ S, xTs ∈ XT
s } is a family of probability distributions on Xs.

This product corresponds to a family of Markov processes, one at each site.

Example 4 (The North-East-Center Majority Voter PCA). The state space at each

site s ∈ S is Xs = {0, 1}. At each time step each site computes the majority state over

its north and east neighbours and itself (this is called the “NEC neighbourhood” and

corresponds to the set Ts in the above construction). Next with independent probability

(corresponding to ps above) the site is updated to the majority state with probability

1− λ and to the opposite state with probability λ. We refer to λ as the error rate.

Many results have been proven rigorously about the PCA in the last example.
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Firstly, if λ is near enough to 1
2

there is a unique space time phase, in contrast, if λ > 0

is small enough there are at least two. The latter is a consequence of work by Toom that

for λ small enough there is a function c(λ) < 1
2

and at least two stationary probability

distributions, for one of which the probability of any given site being 1 is c(λ) and for

the other it is 1 − c(λ). Each generates a space-time phase by time evolution. For a

lengthier discussion see section 2 of (MacKay and Diakonova,2011).

2.2 Two Metrics Between Distributions of PCA.

Definition 5 (Complete Metric). A complete metric is a metric in which every Cauchy

sequence is convergent. A topological space with a complete metric compatible with

the topology is called a complete metric space.

Definition 6 (Separable Metric Space). A topological space is called separable if it

contains a countable, dense subset; that is, there exists a sequence {xn}n∈N of elements

of the space such that every non-empty open subset of the space contains at least one

element of the sequence.

Definition 7 (Coupling). Let (X , µ) and (Y , ν) be two probability spaces. Coupling

µ and ν means constructing two random variables X and Y on some probability space

(Ω,P), such that Law(X) = µ and Law(Y ) = ν. The couple (X,Y ) is called a coupling

of (µ, ν). By abuse of language, the law of (X,Y ) is also called a coupling of (µ, ν).

Remark 8. Another way of rephrasing this definition is to define a coupling of µ and ν

as a measure π on X × Y such that (projX )#π = µ, and (projY)#π = ν, where projX
and projY respectively stand for the projection maps (x, y) 7→ x and (x, y) 7→ y. It is

also equivalent to say that for all integrable non-negative measurable functions ψ and

ϕ on X , Y , ∫
X×Y

(ϕ(x) + ψ(y))dπ(x, y) =

∫
X
ϕdµ+

∫
Y
ψdν.
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We will refer to this as the marginal condition.

Example 9 (Optimal Transport). Let c : X ×Y → R be the cost function. The value

c(x, y) can be interpreted as the cost requird to transport a unit of mass from the point

x to the point y. Then the Monge-Kantorovich minimization problem is

inf
∫
X×Y

c(x, y)dπ(x, y),

where the infimum runs over all joint probability measures π on X×Y with marginals

µ and ν. The measures π are referred to a transport plans, and those achieving the

minimum value are referred to as optimal transference plans.

This coupling leads to the definition of the Wasserstein distance .

Definition 10 (Wasserstein Distance). Let (X , d) be a Polish metric space, and let

p ∈ [1,∞). For any two probability measures µ, ν on X , the Wasserstein distance of

order p between µ and ν is defined by the formula

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X
d(x, y)pdπ(x, y)

) 1
p

When p = 1 this is called the Kantorovich-Rubinstein distance and had the dual

representation

W1(µ, ν) = sup
||ψ||Lip≤1

{∫
X
ψdµ−

∫
X
ψdν

}
.

Definition 11 (Polish Space). A Polish space is a complete, separable metric space,

equipped with its Borel σ−algebra denoted by M.

Remark 12. If {(Xs,Ms)}s∈S is a family of measurable spaces and Es is any element of

Ms, the product σ−algebra on X =
∏

s∈S Xs is the smallest σ−algebra on X that makes

all the projection maps µs : X → Xs measurable, that is, the σ−algebra generated by
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the sets µ−1
s (Es) as Es ranges over Ms and s ranges over S. It is denoted by ⊗s∈SMs.

This is analogous to the product topology on a product of topological spaces.

Say we want to construct a metric on a probabilistic cellular automata. Consider

first the collection of state spaces (Xs)s∈S where each (Xs, ds) is a Polish probability

space5 with bounded diameter. Next, define X =
∏

s∈S Xs, introduce µ and ν as

probability distributions on X , and the set of couplings π of µ and ν. We will write

µ, ν ∈ P(X ) and π ∈ Π(µ, ν) respectively. Finally note that ds extends trivially to a

symmetric non-negative function ds : X × X → R by defining for (x, y) ∈ X × X ,

ds(x, y) = ds(xs, ys) - here xs represents the sth component of the vector x. Hence we

have the following definitions.

Definition 13 (Steif’s Metric).

d̄(µ, ν) = inf
π∈Π(µ, ν)

sup
s∈S

∫
ds(xs, ys)dπ(x, y)

Remark 14. This is an extension of a metric that was introduced by J. Steif in (Steif,1988).

Steif considered the case where the statespace was {0, 1} and ds the indicator metric.

In the appendix I prove that this is a complete metric on P(X ).

Definition 15 (Dobrushin Metric). Let F be the space of continuous functions f :

X →R such that

||f ||F =
∑
s∈S

∆s(f) <∞,

where

∆s(f) = sup
{
f(x)− f(y)

ds(xs, ys)
: xt = yt ∀t 6= s, xs 6= ys

}
.

5The term “Polish probability space” comes from Villani. The interpretation is that µ and ν are
Borel measures on the Polish space which, in Villani’s view, is implicitly equipped with it’s σ−algebra.
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Then we define Dobrushin’s metric as,

D(µ, ν) = sup
f∈F\C

(µ− ν)(f)∑
s∈S ∆s(f)

Here C denotes the constant functions, µ(f) =
∫
fdµ.

The next proposition is a useful reformulation of Dobrushin’s metric that will be

used to prove that D(µ, ν) = d̄(µ, ν).

Proposition 16. For E =
{
e = (es)s∈S : es > 0,

∑
s∈S es ≤ 1

}
,

D(µ, ν) = sup
f∈F\C

(µ− ν)(f)∑
s∈S ∆s(f)

= sup
f∈F\C, e∈E

∫
(dµ− dν)(x)f(x) subject to f(x)− f(y) ≤ esds(xs, ys), xt = yt∀t 6= s

= sup
f∈F\C, e∈E

∫
(dµ− dν)(x)f(x) subject to f(x)− f(y) ≤

∑
s∈S

esds(xs, ys)

Proof. Define

sup
{
f(x)− f(y)

ds(x, y)
: xt = yt ∀t 6= s, xs 6= ys

}
:= es,

then f(x)−f(y)
ds(x,y)

≤ es for all (x, y) ∈ X × X such that xt = yt ∀t 6= s, xs 6= ys.

Obviously we can rewrite D(µ, ν) as

sup
f∈F\C

{(µ− ν)(f) : ||f ||F ≤ 1}

= sup
f∈F\C

sup
e∈E

{
(µ− ν)(f),

f(x)− f(y)

ds(x, y)
≤ es, xt = yt ∀t 6= s, xs 6= ys

}
. (2.1)

It can be shown (see Lemma 5.3 on page 28) that the conditions in the second line
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can be rewritten as

es ≥ 0,
∑
s∈S

≤ 1, f(x)− f(y) ≤
∑
s∈S

esds(x, y).

The main goal of this project is to show that these two metrics are in fact identical

by proving that the following duality exists.

inf
π∈Π(µ, ν)

sup
s∈S

∫
ds(xs, ys)dπ(x, y)

Duality
= sup

f∈F\C

(µ− ν)(f)∑
s∈S ∆s(f)

In the case of the Wasserstein distance this property is called the Kantorovich

Duality. The dual interpretation has the benefit of allowing the user to pass back and

forth between the two - a property that has proven of great technical convenience in

the case of the Wasserstein distance.

3 Example of Explicit Calculation

3.1 Setup

The aim in this section is to calculate explicitly the distance between two station-

ary distributions of the NEC majority voter PCA (see example 4 on page 11 ) in

terms of Dobrushin’s metric. We consider the initial distributions δ0 (xs = 1) = 0 and

µ0 (xs = 1) = c(λ).

3.2 Dobrushin’s Metric (MacKay and Diakonova,2011)

We will prove that

D (µ0, δ0) = c(λ).
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First by considering f(x) = x00 the value of the state at site (0, 0) then µ0(f) −

δ0(f) = c(λ). We also have ||f || =
∑

s∈S ∆s(f) =
∑

s∈S supx=y off s
f(x)−f(y)
ds(xs,ys)

= 1. So

D(µ0, δ0) ≥ c(λ). Next we bound it above by the same. Consider all functions f with

support on a finite subset of space I. I is countable so we can consider some arbitrary

order imposed on the elements. Without loss of generallity we can let f(x) = 0 at the

all zero state, then characterize f(x) as the sum of changes from the all zero state. This

is bounded above by
∑

s:x=1∆s(f). So

µ0(f)− δ0(f) =
∑
s on I

µ0(x)f(x) ≤
∑
x on I

µ0(x)
∑
s:xs=0

∆s(f)

=
∑
s∈I

∆s(f)
∑

x on I:xs=1

µ0(x) =
∑
s

∆s(f)c(λ) ≤ c(λ)||f ||

4 Kantorovich Duality

In this section we will state the Kantorovich Duality. A proof can be found in (Vil-

lani,2009).

Definition 17 (Concentration of Measure). If µ is a Borel measure on a topological

space X, a set N is said to be µ−negligible if N is included in a Borel set of zero

µ−measure. Then µ is said to be concentrated on a set C if X\C is negligible. (If

C itself is Borel measurable, this is of course equivalent to µ[X\C] = 0.) By abuse of

language, I may say that X has full µ−measure if µ is concentrated on X .

Definition 18 (Upper Semi-continuity). We say that a function f is upper semi-

continuous at x0 if for every y > f(x0) there exists a neighbourhood Uof x0 such that

f(x) < y for all x ∈ U. For the particular case of a metric space, this can be expressed

as

lim sup
x→x0

f(x) ≤ f(x0).
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The function f is called upper semi-continuous if it is upper semi-continuous at

every point of its domain.

Definition 19 (Lower Semi-continuity). We say that a function f is lower semi con-

tinuous at x0 if for every y < f(x0) there exists a neighbourhood Uof x0 such that

f(x) > y for all x ∈ U. For the particular case of a metric space, this can be expressed

as

lim inf
x→x0

f(x) ≥ f(x0).

The function f is called lower semi-continuous if it is lower semi-continuous at every

point of its domain.

Definition 20 (Cyclical Monotonicity). Let X ,Y be arbitrary sets, and c : X × Y →

(−∞,+∞] be a function. A subset Γ ⊂ X × Y is said to be c−cyclically monotone if,

for any N ∈ N, and any family (x1, y1), ..., (xN , yN) of points in Γ, holds the inequality

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1)

(with the convention that yN+1 = y1). A transference plan is said to be c−cyclically

monotone if it is concentrated on a c−cyclically monotone set.

Definition 21 (c-convexity). Let X ,Y be sets, and c : X×Y → (−∞,+∞]. A function

ψ : X → R∪ {+∞} is said to be c−convex if it is not identically +∞, and there exists

ζ : Y → R ∪ {±∞} such that

∀x ∈ X ψ(x) = sup
y∈Y

(ζ(y)− c(x, y)) .

Then its c−transform is the function ψc defined by

∀y ∈ Y ψc(y) inf
x∈X

(ψ(x) + c(x, y)) ,
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and its c−sub-differential is the c−cyclically monotone set defined by

∂cψ := {(x, y) ∈ X × Y ; ψc(y)− ψ(x) = c(x, y)} .

The functions ψ and ψc are said to be c−conjugate.

Moreover, the c−sub-differential of ψ at point x is

∂cψ(x) = {y ∈ Y ; (x, y) ∈ ∂cψ} ,

or equivalently

∀z ∈ X , ψ(x) + c(x, y) ≤ ψ(z) + c(z, y).

Definition 22 (c-concavity). With the same notation as in the previous definition, a

function ϕ : Y → R∪{−∞} is said to be c−concave if it not identically −∞, and there

exists ψ : X → R ∪ {±∞} such that ϕ = ψc. then its c−transform is the function ϕc

defined by

∀x ∈ X ϕc(x) = sup
y∈Y

(ϕ(y)− c(x, y)) ;

and its c−sub-differential is the c−cyclically monotone set defined by

∂cϕ := {(x, y) ⊂ X × Y ; ϕ(y)− ϕc(x) = c(x, y)} .

Remark 23. If c = d is a distance on some metric space X ,then a c−convex function

is just a 1−Lipschitz function and is its own c−transform. In general, if c satisfies the

triangle inequality then ψ is c−convex if and only if ψ(y)− ψ(x) ≤ c(x, y) for all x, y;

and then ψ = ψc.

Theorem 24 (Kantorovich Duality). Let (X , µ) and (Y , ν) be two Polish probability

spaces and let c : X × Y → R ∪ {+∞}be a lower semicontinuous cost function such
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that ∀(x, y), c(x, y) ≥ a(x) + b(y) for some real valued upper semi-continuous functions

a ∈ L1(µ) and b ∈ L1(ν). Then,

1. There is duality

min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) = sup
(ϕ,ψ)∈C0(X )×C0(Y)

ϕ−ψ≤C

(∫
Y
ϕ(y)dν(y)−

∫
X
ψ(x)dµ(x)

)

= sup
(ϕ,ψ)∈L1(X )×L1(Y)

ϕ−ψ≤C

(∫
Y
ϕ(y)dν(y)−

∫
X
ψ(x)dµ(x)

)

= sup
ψ∈L1(µ)

(∫
Y
ψc(y)dν(y)−

∫
X
ψ(x)dµ(x)

)
(4.1)

= sup
ϕ∈L1(ν)

(∫
Y
ϕ(y)dν(y)−

∫
X
ϕc(x)dµ(x)

)

And in the above suprema we may as well impose that ψ is c-convex and ϕ is

c-concave.

2. If c is real valued and the optimal cost C(µ, ν) = infπ∈Π(µ,ν)

∫
cdπ is finite, then

there is a measurable c-cyclically monotone set Γ ⊂ X × Y (closed if a, b and c

are continuous.) such that for any π ∈ Π(µ, ν) the following are equivalent.

(a) π is optimal;

(b) π is cyclically monotone;

(c) There is a c-convex ψ such that, π-almost surely, ψc(y)− ψ(x) = c(x, y);

(d) There exist ψ : X → R∪{+∞} and ϕ : Y → R ∪ {−∞}, such that ϕ(y) −

ψ(x) ≤ c(x, y) for all (x, y), with equality π-almost surely;

(e) π is concentrated on Γ.
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3. If c is real valued, C(µ, ν) < +∞, and one has the pointwise upper bound

c(x, y) ≤ cX (x) + cY(y),

(cX , cY) ∈ L1(µ)× L1(ν) (4.2)

Then both the primal and the dual Kantorovich problem have solutions, so

min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) = max
(ϕ,ψ)∈L1(X )×L1(Y)

ϕ−ψ≤C

(∫
Y
ϕ(y)dν(y)−

∫
X
ψ(x)dµ(x)

)

= max
ψ∈L1(µ)

(∫
Y
ψc(y)dν(y)−

∫
X
ψ(x)dµ(x)

)

And in the latter expressions we may as well impose that ψ be convex and ϕ = ψc.

If in addition a, b and c are continuous, then there is a closed c-cyclically monotone

set Γ ⊂ X × Y, such that for any π ∈ Π(µ, ν) and for any c-convex ψ ∈ L1(µ)

• π is optimal in the Kantorovich problem if and only if π (Γ) = 1.

• ψ is optimal in the Kantorovich problem if and only if Γ ⊂ ∂cψ.

Remark 25. As in case 23 there is the following particular variation of the above duality

called the Kantorovich-Rubinstein theorem. When c(x, y) = d(x, y) is a distance on a

Polish space X , and µ, ν belong to P(X ),then

inf
π∈Π(µ,ν)

E[d(x, y)] = supE[ψ(x)− ψ(y)] = sup
{∫

X
ψdµ−

∫
Y
ψdν

}
,

where the supremum on the right is over all 1−Lipschitz functions ψ.
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5 Proof of duality.

This section contains the main result. The first subsection introduces the requisite

definitions and Lemmas. The second introduces the duality, illustrating the ideas with

a practical analogy taken from information theory. The third has a short informal

description of the proof as well as a sketch. The fourth subsection contains the rigorous

proof. The fifth is a theorem proving some equivalent statement about the domain of

the transmission method - similar to part (ii) of the Kantorovich duality in the previous

section.

5.1 Definitions and Technical Requirements.

Remark 26. In the sequel, vectors in X are denoted x or y. To differentiate between

two vectors I use superscripts. for example, a sequence of vectors in X ×X is denoted

{(xi, yi)}i∈N. Then the s−component of x is denoted xs and so a sequence of real ordered

pairs made up of the s-components of the above sequence of vectors is {(xis, yis)}i∈N.

Definition 27 (Compact Set). A subset C of a topological space X is compact if for

every open cover of C there exists a finite sub-cover of C.

Definition 28 (Pre-compactness). A set C in a normed space is pre-compact if every

sequence of points in C has a subsequence converging in norm to an element of the

space.

Definition 29 (Tight Set). A set X is tight if for any ϵ > 0 there is a compact set Kϵ

such that µ[X\Kϵ] ≤ ϵ for all µ ∈ P (X ).

Remark 30. For the next result we need to recall a technique for constructing bounded

metrics. Suppose that d is a metric on the set X. It is easy to check that the formula

d0(x, y) = min(1, d(x, y)) (5.1)
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defines a metric on X, that the metrics d and d0 determine the same topology on X,

and that X is complete under d0 if and only if it is complete under d.

Theorem 31. (Cohn,1980) A finite or infinite product of Polish spaces is Polish.

Proof. Let I be a finite or infinite subset of N. Let (Xi, di)i∈I be a sequence of Polish

spaces, where each di is a complete metric which metrizes Xi. We may assume that

no Xi is empty. Further, by (5.1) we may assume that di(xi, yi) ≤ 1 holds for each i

and each (xi, yi) in Xi. For points x, y in
∏

iXi, with coordinates x1, x2, ... and y1, y2, ...

respectively, let

d(x, y) =
∑
i

1

2i
di(xi, yi).

It is easy to check that this defines a metric d on
∏

iXi, that d metrizes the product

topology on
∏

iXi, and that
∏

iXi is complete under d.

We can prove the separability of
∏

iXiby constructing a countable basis for
∏

iXi.

For each i choose a countable basis Bi for Xi. Then the collection of subsets of
∏

iXi

that have the form

B1 × · · · ×BN ×XN+1 ×XN+2 × · · ·

For some N and some choice of sets Bi in Bi, i = 1, ..., N, is the required basis for∏
iXi.

Theorem 32 (Prokhorov’s Theorem). If X is a Polish space, then a set P ⊂ P (X )

is pre-compact for the weak topology if and only if it is tight.

Theorem 33 (Varadarajan’s Theorem). Let (X ,µ) be a Polish probability space.

Then the empirical measures µn = 1
n

∑n
i=1 δxi, (xibeing a sequence of random variables

with values in X and law µ) converges to µ almost surely.

Proof of Prokhorov’s theorem and Varadarajan’s theorem can be found in (Dud-

ley,2002) on pages 404-405 and 399 respectively.
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Theorem 34 (Existence of an optimal coupling). Let (X , µ) and (X , ν) be two

Polish probability spaces. Let ds : X × X → R be a metric on Xs. Then there is

a coupling of (µ, ν) which minimizes maximal distance sups Eds(X,Y ) over all sites,

among all possible couplings (X,Y ).

For the proof we will need the following Lemmas.

Lemma 35. Let (Xs, ds) be a collection of Polish spaces with bounded diameter, each

metrized respectively by ds. Then X =
∏

sXs is also a polish space by theorem 4. Let

ds : X × X → R be a metric and hs : X × X → R be a continuous function such that

for all s ∈ S, ds ≥ hs. Let (πk)k∈N be a sequence of probability measures on X × X ,

converging weakly to some π ∈ P(X ×X ), in such a way that hs ∈ L1(πk), hs ∈ L1(π),

and ∫
X×X

hsdπk −→
k→∞

∫
X×X

hsdπ.

Then for every s ∈ S

∫
X×X

ds(x, y)dπ ≤ lim inf
k→∞

∫
X×X

ds(x, y)dπk.

In particular, F : π →
∫
ds(x, y)dπ is lower semi-continuous on P(X ×X ), equipped

with the topology of weak convergence.

Proof. Since ds is non-negative it can be written as the pointwise limit of a non-

decreasing family (dks)k∈N of continuous real-valued functions. By monotone conver-

gence, ∫
dsdπ = lim

l→∞

∫
(ds)ldπ = lim

l→∞
lim
k→∞

∫
(ds)ldπk ≤ lim inf

k→∞

∫
dsdπk.

This is the desired result.

Lemma 36 (Tightness of transmission plans). Let X and Y be two Polish spaces.

Let P ⊂ P (X ) and Q ⊂ P (Y) be tight subsets of P (X ) and P(Y) respectively. Then
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the sets Π(P,Q) of all transference plans whose marginals lie in P and Q respectively,

is itself tight in P(X × Y).

Proof. Let µ ∈ P, ν ∈ Q, and π ∈ Π(µ, ν). By assumption, for any ϵ > 0 there is a

compact set Kϵ ⊂ X , independent of the choice of µ in P, such that µ[X\Kϵ] ≤ ϵ; and

similarly there is a compact set Lϵ ⊂ Y , independent of the choice of ν in Q, such that

ν[X\Lϵ] ≤ ϵ. Then for any coupling (X,Y ) of (µ, ν),

P [(X,Y ) /∈ Kϵ × Lϵ] ≤ P [X /∈ Kϵ] + P [Y /∈ Lϵ] ≤ 2ϵ

The desired result follows since this bound is independent of the coupling, and

Kϵ × Lϵ is compact in X × X .

Proof of theorem 6. Since X is Polish, {µ} and {ν} are tight in P(X ); By Lemma 15,

Π(µ, ν) is tight in P (X × X ), and by Prokhorov’s theorem this set has a compact

closure. By passing to the limit in the equation for the marginals, we see that Π(µ, ν)

is closed, so it is compact. Then let (πk)k∈N be a sequence of probability measures on

X ×X , such that sups
∫
dsdπk converges to the infimum transmission error. Extracting

a subsequence if necessary, we may assume πk converges to some π ∈ Π(µ, ν). The

function hs : (xs, ys) 7→ (0, 0) lies in L1(πk) and in L1(π), and ds ≥ hs by assumption;

moreover,
∫
hsdπk =

∫
hsdπ = 0; so Lemma 4.3 implies

∫
dsdπ ≤ lim inf

k→∞

∫
dsdπk

and

sup
s

∫
dsdπ ≤ sup

s
lim inf
k→∞

∫
dsdπk.

Thus π is minimizing.

25



5.2 Developing Duality with an Informal Analogy

I start with the characterization of Steif’s metric as an optimization problem.

Suppose we have an alphabet A consisting of symbols and S is a countable set with

cardinality6 N where s ∈ S represents the sth element in a set indexed by S. Let each

Xs be a subset of A representing the set of allowable symbols at xs (the sth character

of a word). So each vector x ∈ X represents a word and X can be referred to as the

dictionary, while some sequence (xi)i∈N ⊂ X is called a message.

We will consider the situation where messages are sent to a receiver via some trans-

mission method. Let µ and ν be probability distributions representing the probability

of a word before and after transmission respectively. Now π can be thought of as a

transmission method. A transmission method consists of an encoding method, trans-

mission medium and a decoding method. The encoded signal, while travelling through

the medium may be influenced by external noise. We describe such noise with the

vector e = (es)s∈S which we will from now on refer to as “intrinsic error”. Let e ∈ E

where E = {e ∈ RN :
∑

s es ≤ 1, es > 0}

The joint distribution π((x, y)) is the probability that a signal x transmitted via the

method π is received as y.

Suppose now that you have cooked up some transmission process but have found

that too often the output has errors. You know that when encoding a message the

information is compressed and as such an error at any one site can completely change

the signal (due to the decoding process). So if ds is the error quantification (distance

between two symbols), x the input signal and y the output signal then we want to find

a plan π∗ such that
6S may be infinite but for illustration purposes I will stick to finite sites. In the proof, step 2

extends the theory to infinite S.
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π∗ = inf
π∈Π(µ,ν)

sup
s∈S

Eπ[ds(x, y)].

In words: π∗ is the transmission method that provides the smallest maximum error

that is to be expected between any symbol before transmission and it’s correspond-

ing symbol (occupying its position in the message) after transmission. Now consider

{xi, yi}i∈I⊂N as sequence of words in a message, then we have the following definition.

Definition 37 ((S, esds)− Cyclical Monotonicity). Let X =
∏
Xs, where (Xs, ds) are

polish space. A subset Γ ⊂ X × X is said to be esds−cyclically monotone if, for

any collection M ∈ N, and any family (x1s, y
1
s), ..., (x

M
s , y

M
s ) of points in Γ, holds the

inequality

sup
s∈S

M∑
i=1

esds(x
i
s, y

i
s) ≤ sup

s∈S

M∑
i=1

esds(x
i
s, y

i+1
s ) (5.2)

(with the conventions that yNs+1
s = y1s). A transmission method is said to be

esds−cyclically monotone if it is concentrated on a esds−cyclically monotone set.

Cyclical monotonicity enables us to ignore methods that prioritize minimizing spuri-

ous errors. These errors are spurious because the surrounding symbols matter, two

words are not encoded the same way and the sth symbol of the (i+ 1)th word may not

even be the same as that of the ith word! That leads us to the following definition.

While it’s fairly obvious that an optimal plan must be cyclically monotone the

converse is less clear - but it never the less holds as soon the diameter of each Xs is

finite and each ds is real valued. Theorem 38 “equivalence statements about optimal

plans” goes into the details of this.

Now we will consider the dual problem. In the primal problem we are trying to

minimize the impact of errors, in the dual problem we will be looking for the most

accurate coding strategy. Let ψ(y) be the error rate when decoding y and ϕ(x) the
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error detection accuracy we can achieve when encoding x. Ideally we would detect all

errors made in the encoding process and decode without making errors. We will refer to

the pair (ψ, ϕ) as a coding strategy. The accuracy of our coding strategy is ϕ(x)−ψ(y)

which is assumed to be non-negative. Of course this is for each word, if the word x

occurs at rate µ(dx) then the total error rate will be ψ(x)µ(dx). Obviously the accuracy

can not be greater than the distance between two words so

ϕ(x)− ψ(y) ≤
∑
s

ds(x, y).

However, absolute accuracy may not be possible as there could be noise in the

transmission media. Taking into account intrinsic error gives

ϕ(x)− ψ(y) ≤
∑
s∈S

esds(xs, ys). (5.3)

In our analogy e shrinks the measurement of the error making it less likely to be

picked up. We call a coding strategy satisfying this inequality plausible. The following

lemma will come in very useful.

Lemma 38. For any functions ϕ ∈ L1(µ) and ψ ∈ L1(ν) and e = (es)s∈S a vector

contained in E. Then, we have

ϕ(x)− ψ(y) ≤
∑
s∈S

esds(xs, ys).

If and only if, for each s ∈ Sand all (x, y) ∈ X × X such that xt = ytoff s,we have

ϕ(x)− ψ(y) ≤ esds(xs, ys). (5.4)

Proof. For sufficiency it is enough to simply specialize
∑

s esds to x = y off s. For
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necessity, fix x, y ∈ X and put J = {s ∈ S : xs 6= ys}. Without loss of generality we

may assume that J = (jn)n∈N. Let (xn)n∈Nbe a sequence of configurations such that

x0 = x, for which limn→∞ xn = y and such that for all n,m ∈ N :

xnjn 6= xn+1
jn

, xnb = xn+1
b (b = jn), xn+m+1

jn
= yjn .

Which implies that

f(x)− f(y) ≤
∑
n

f(zn)− f(zn−1) ≤
∑
n

ejndjn(x, y)

which is the desired conclusion.

Where as before the task was to minimize the error, now it is to maximize the

accuracy. This leads naturally to the dual problem:

Definition 39 (Dual problem).

sup
{∫

Y
ϕ(y)dν(y)−

∫
X
ψ(x)dµ(x); ϕ(y)− ψ(x) ≤ esds(x, y); x = y off s

}
(5.5)

Impose that ϕ and ψ be integrable: ψ ∈ L1(X , µ); ϕ ∈ L1(Y , ν). By linearity of the

integral and (5.4), for a given e we have

sup
ϕ−ψ≤escs
x=y off s

{∫
Y
ϕ(y)dν(y)−

∫
X
ψ(x)dµ(x)

}
≤ inf

π∈Π

{
sup
s∈S

∫
ds(xs, ys)dπ(x, y)

}
(5.6)

This is as expected since optimizing the coding strategy cannot increase the error

rate of the transmission.

Denote by ds∗ the metric on the allowable symbols at site s ∈ S with the largest

expected error with respect to π. This exists because the state space at each site is of

bounded diameter, hence ds is bounded above and below for all s. As a result we may
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conclude that ds is integrable and the supremum of
∫
dsdπ can be identified. Of course

in the dual problem we would like to choose the best possible plausible strategy. So

for any given y we would choose the highest lower bound of ψ(x) + es∗ds∗(xs, ys) and

consider the worst case scenario with regards to the intrinsic error. Likewise for any

given x we would choose the supremum of ψ(x) + es∗ds∗(xs, ys) and take the infimum

over all intrinsic error vectors.

Definition 40 (Tight Coding Strategy). Let |S| = N. The coding strategy (ψ, ϕ) is

tight if, for each s and ∀(x, y) ∈ X × X : x = y off s,

ϕ(y) = sup
e∈E

inf
x
(ψ(x) + es∗ds∗(xs, ys)) , ψ(x) = inf

e∈E
sup
y

(ϕ(y)− es∗ds∗(xs, ys)) (5.7)

and we denote by e∗ any e ∈ E for which the above equality holds.

A coding strategy being tight implies that one cannot decrease the decoding error

or increase the encoding accuracy while keeping the strategy plausible. Both formulae

in the above definition will only hold simultaneously if ψ has the following convexity

property.

Definition 41 (esds−convexity). Let X =
∏

sXs be a set and ds : X × X → [0,+∞]

such that x = y off s. A function ψ : R∪{+∞} is said to be esds−convex if it is not

identically +∞, and there exists ζ : X → R∪{±∞} such that

∀x ∈ X ψ(x) = inf
e∈E

sup
y∈X

(ζ(y)− es∗ds∗(x, y)) (5.8)

Then its esds−transform is the function ψesds(y) defined by

∀y ∈ X ψesds(y) = sup
e∈E

inf
x∈X

(ψ(x) + es∗ds∗(x, y)) (5.9)
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and its esds−sub-differential is the esds−cyclically monotone set defined by

∂esdsψ := {(x, y) ∈ X × X ;ψesds(y)− ψ(x) = e∗s∗ds∗(x, y)}

The functions ψ and ψesds are said to be esds−conjugate. Moreover, the esds−sub-

differential of ψ at point x is

∂esdsψ(x) = {y ∈ Y ; (x, y) ∈ ∂esdsψ}

or equivalently

∀z ∈ X , ψ(x) + e∗s∗ds∗(x, y) ≤ ψ(z) + e∗s∗ds∗(z, y) (5.10)

since,

ψc(y)− ψ(x) = e∗sds∗(x, y)

⇒ sup
e∈E

inf
x∈X

(ψ(x) + es∗ds∗(x, y)) = ψ(x) + e∗sds∗(x, y)

⇒ ψ(x) + e∗s∗ds∗(x, y) ≤ ψ(z) + e∗s∗ds∗(z, y)

Remark 42. By Lemma 8 we can generalize (0.8) to ∀z ∈ X , ψ(x) +
∑

s e
∗
sds∗(x, y) ≤

ψ(z) +
∑

s e
∗
sds∗(z, y)

Remark 43. Since
∑

s e
∗
sds∗ satisfies the triangle inequality

∑
s e

∗
sds∗(x, z) ≤

∑
s e

∗
sds∗(x, y)+∑

s e
∗
sds∗(y, z), it follows that ψ is c−convex if and only if ψ(y)−ψ(x) ≤

∑
s e

∗
sds∗(x, y)

for all x, y. Hence ψ = ψesds .

Proposition 44 (Alternative Characteristic of esds−convexity). For any func-

tion ψ : X → R ∪ {+∞}, let its esds− convexification be defined by ψdd = (ψd)d. More
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explicitly,

ψdd(x) = sup
y∈X

inf
z∈X

(ψ(z) + e∗s∗ds∗(z, y)− e∗s∗ds∗(x, y)) .

Then ψ is esds−convex if and only if ψdd = ψ.

Proof. For any function ϕ : Y → R ∪ {−∞} (not necessarily esds−convex), it holds

that ϕddd = ϕd. More accurately we have

ϕddd(x) = sup
y

inf
z

sup
w

[ϕ(w)− e∗s∗ds∗(z, w) + e∗s∗ds∗(z, y)− e∗s∗ds∗(x, y)] .

Now, choose z = x which gives us ϕddd(x) ≤ ϕd(x); while the choice w = y shows

that ϕddd(x) ≥ ϕd(x).

If ψ is esds−convex, then there is ζ such that ψ = ζd,so ψdd = ζddd = ζd = ψ.

Conversely, if ψdd = ψ, then ψ is esds−convex, as the esds−transform of ψc.

5.3 Statement of the Duality

Theorem 45. Let S be any countable set and consider a collection {Xs}s∈S such that

each Xs is a complete separable metric space of bounded diameter. Let X = ΠsXs and

ds be a collection of metrics on X defined by ds(x, y) = ds(xs, ys). Denote the set of

all probability measures on X × X with marginals µ and ν by Π(µ, ν) . Then there is
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Duality;

min
π∈Π(µ,ν)

sup
s∈S

∫
X×X

ds(xs, ys)dπ(x, y)

= sup
(ϕ,ψ)∈C0(X )×C0(X )

ϕ−ψ≤esds

(∫
X
ϕ(y)dν(y)-

∫
X
ψ(x)dµ(x)

)

= sup
(ϕ,ψ)∈L1(X )×L1(X )

ϕ−ψ≤esds

(∫
X
ϕ(y)dν(y)−

∫
X
ψ(x)dµ(x)

)
(5.11)

= sup
ψ∈L1(µ)

(∫
X
ψesds(y)dν(y)−

∫
X
ψ(x)dµ(x);ψesds − ψ ≤ esds

)
= sup

ϕ∈L1(ν)

(∫
X
ψ(y)dν(y)−

∫
X
ψ(x)dµ(x);ψ(y)− ψ(x) ≤ esds

)

and in the above suprema one might as well impose that ψ be esds−convex and ϕ

esds−concave.

Theorem. Further, if for all s ∈ S the distance metric is real valued, the optimal cost

is finite, and one has the pointwise upper bound

ds(x, y) ≤ fs(x) + gs(y), (fs(x), gs(y)) ∈ L1(µ)× L1(ν),

where fs and gs are functions from Xs to R then;

1. Both the primal and dual problems have solutions, so

min
π∈Π(µ,ν)

max
s∈S

∫
X×X

dsdπ = max
ψ∈L1(µ)

(∫
X
ψ(y)dν(y)−

∫
X
ψ(x)dµ(x)

)

2. There is a closed esds−cyclically monotone set Γ ⊂ X × X , such that for any

π ∈ Π(µ, ν) and for any esds−convex ψ ∈ L1(µ),

(a) π is optimal in the primal problem if and only if π[Γ] = 1;

(b) ψ is optimal in the dual problem if and only if Γ ⊂ ∂esdsψ.
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5.4 Idea for Proof:

The main steps are as follows

1. Prove that the optimal plan is cyclically monotone if the distributions µ and ν

are delta functions at each point in statespace. This would be sufficient to prove

the finite case.

2. Use the central limit theorem to extend this existence theorem to countable S

and Xs.

3. Show that if π is optimal it must lie in the sub-differential of ψ.

4. Show that ψ and ϕ must be bounded and by step 3 are optimal.

5. Show that ψ and ϕ are integrable and hence a feasible point exists for both

problems.

We have proved that an optimal plan π indeed exists. For each s ∈ S the state-space

Xs is bounded so there exists s∗ ∈ S such that
∫
ds∗dπ = sups

∫
dsdπ. Now, let (ψ, ϕ)

a coding strategy satisfying. Of course, if xt = yt ∀t : t 6= s then

∫
e∗s∗ds∗(x, y)dπ(x, y) ≥

∫
ϕ(x)dν −

∫
ψ(y)dµ =

∫
[ϕ(y)− ψ(x)] dπ(x, y)

So if the inequality is an equality we have
∫
[e∗s∗ds∗ − ϕ+ ψ] dπ = 0, and hence

ϕ(y)− ψ(x) = e∗s∗ds∗ π(dxdy)− a.s.

Intuitively speaking, whenever y is an allowable input and x an allowable output,

the a coding strategy is chosen so that the accuracy is equal to the maximal error at any

site scaled according to the worst case intrinsic error. Now let (xi)0≤i≤m and (yi)0≤i≤m
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be such that ds∗(xis∗ , yis∗). Then we observe that



ϕ(y0)− ψ(x0) = e∗s∗ds∗(x
0, y0)

ϕ(y1)− ψ(x1) = e∗s∗ds∗(x
1, y1)

... ...

ϕ(ym)− ψ(xm) = e∗s∗ds∗(x
m, ym)

On the other hand, if x is an arbitrary point,



ϕ(y0)− ψ(x1) ≤ e∗s∗ds∗(x
1, y0)

ϕ(y1)− ψ(x2) ≤ e∗s∗ds∗(x
0, y1)

... ...

ϕ(ym)− ψ(x) ≤ e∗s∗ds∗(x, y
m)

By subtracting these inequalities from the previous equalities and adding everything

up, one obtains

ψ(x) ≥ ψ(x0) +
[
e∗s∗ds∗(x

0, y0)− e∗s∗ds∗(x
1, y0)

]
+ · · ·+ [e∗s∗ds∗(x

m, ym)− e∗s∗ds∗(x, y
m)]

Of course, one can add an arbitrary constant to ψ, provided that one subtracts

the same constant from ϕ; so it is possible to decide that ψ(x0) = 0, where (x0, y0) is

arbitrarily chosen in the support of π. Then

ψ(x) ≥
[
e∗s∗ds∗(x

0, y0)− e∗s∗ds∗(x
1, y0)

]
+ · · ·+ [e∗s∗ds∗(x

m, ym)− e∗s∗ds∗(x, y
m)]

and this should be true for all choices of (xi, yi) (1 ≤ i ≤ m) in the support of π, and

for m ≥ 1. So it becomes natural to define ψ as the supremum of all the function (in
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the variable x) appearing on the right hand side above. It will turn out that this ψ

satisfies the equation

ψesds(y)− ψ(x) = e∗s∗ds∗(x, y) π(dxdy)− a.s.

ds

for all (x, y) ∈ X × X : xt = yt ⇐⇒ t 6= s. By lemma 8 we can generalize to

ψesds(y)− ψ(x) =
∑

e∗sds∗(x, y) π(dxdy)− a.s.

for all (x, y) ∈ X × X . Then, if ψ and ψesds are integrable, one can write

sup
s

∫
dsdπ =

∫
ψcdπ −

∫
ψdπ∑

s e
∗
s

=

∫
ψdν −

∫
ψdµ∑

s e
∗
s

.

The last equality following from remark 43. This shows at the same time that π is

optimal in the Primal problem, and the function ψ is optimal in the dual problem.

5.5 Rigorous Proof.

Throughout the proof let |S| = N and |Xs| = ns.

Proof. Step 1: If µ = 1∑
s ns

∑N
s=1

∑ns
i=1 δxis , ν = 1∑

s ns

∑N
s=1

∑ns
j=1 δyjs , where the

distances esds(xis, yjs) are finite, then there is at least one cyclically monotone

transmission method.

In this particular case, a transmission method between µ and ν can be identified

with a bi-stochastic N×N array of real valued matrices as with components aijs ∈ [0, 1]:

each aijs tells us the rate at which the point xis, occurring with probability 1∑
s ns

will be
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interpreted as yjs so the primal problem becomes

inf
(aijs )

sup
s

∑
ij

aijs esds(x
i
s, y

j
s)

Where the infimum is over all arrays (aijs ) satisfying

∑
s

∑
i

aijs = 1,
∑
s

∑
j

aijs = 1. (5.12)

Here we are minimizing a linear function on the compact set [0, 1](ns×ns)×(ns×ns), so

obviously there exists a minimizer; the corresponding transmission method π can be

written as

π =
1∑
s ns

N∑
s=1

ns∑
i,j=1

aijs δ(xis,yjs)

and its support Γ is the set of all couples (xi, yj) such that aijs > 0. Assume that Γ =

Suppπ is not cyclically monotone: Then there exist M ∈ N and (xi1s , y
j1
s ) , ..., (x

iM
s , yjMs )

in Γ such that

sup
s

{
esds

(
xi1s , y

j2
s

)
+ ...+ esds

(
xiMs , yj1s

)}
< sup

s

{
esds

(
xi1s , y

j1
s

)
+ ...+ esds

(
xiMs , yjMs

)}
.

Let a := min (ai1,j1s , ..., aiM ,jMs ) > 0. Define a new transmission method π̃ by the

formula

π̃ = π +
a∑
s ns

N∑
s=1

ns∑
l=1

(
δ
(x
il
s ,y

jl+1
s )

− δ
(x
il
s ,y

jl
s )

)
One can check that this has the same marginals, and the error rate associated with

π̃ is strictly less than the error rate associates with π. This is a contradiction, so Γ is

indeed (S, esds)−cyclically monotone!

Step 2: If S and Xs are countably infinite, then there is a cyclically

monotone transmission method.
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To prove this, consider sequences of independent random variables xis ∈ X , yis ∈ X ,

with respective law µ, ν. According to Varadarajan’s theorem, one has, with probability

one,

µN,n :=
1∑
s ns

N∑
s=1

ns∑
i=1

δxis → µ, νN,n :=
1∑
s ns

N∑
s=1

ns∑
j=1

δyjs → ν (5.13)

as N,ns → ∞, for all s ∈ S in the sense of weak convergence of measures. In

particular, by Prokhorovs theorem, µN,ns and νN,ns are tight sequences.

For each pair N,ns, let πN,ns be a cyclically monotone transmission method between

µN,ns and νN,ns . By Lemma 36 on page 24, {πN,ns}N,ns∈N is tight. By Prokhorov’s

theorem, there is a subsequence, still denoted (πN,ns) ,which converges weakly to some

probability measure π, i.e.

∫
h(x, y)dπN,ns(x, y) →

∫
h(x, y)dπ(x, y)

for all bounded continuous functions h on X × X . By applying the previous identity

with h(x, y) = f(x) and h(x, y) = g(y), we see that π has marginals µ and ν.

For each N and each ns, the cyclical monotonicity of πN,ns implies that for all M and

π⊗M
N,ns

−almost all (x1s, y1s) , ...,
(
xMs , y

M
s

)
,the inequality (5.2) is satisfied; in other words,

π⊗M
N,ns

is concentrated on the set C(M) of all
(
(x1s, y

1
s) , ...,

(
xMs , y

M
s

))
s∈S ∈ (X × X )M

satisfying ((5.2)). Since ds is continuous ∀s ∈ S, C(M) is a closed set, so the weak limit

π⊗M of π⊗M
N,ns

is also concentrated on C(M). Let Γ = Suppπ, then

ΓM = (Suppπ)M = Supp
(
π⊗M)

⊂ C(M),

and since this holds true for all M , Γ is cyclically monotone.
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Step 3: If each ds is real-valued and π is cyclically monotone, then there

is an esds−convex ψ such that ∂esdsψ contains the support of π.

Since π is optimal and by steps one and two is cyclically monotone we have the

following implication. If s∗ ∈ S is such that
∫
es∗ds∗dπ = sups

∫
esdsdπ then from

cyclical monotonicity

∑
i=1

es∗ds∗(x
i, yi) ≤

∑
es∗ds∗(x

i, yi+1)

which we can rewrite as

∑
i=1

[es∗ds∗(x
i, yi)− es∗ds∗(x

i, yi+1)] ≤ 0.

Indeed, let Γ again denote the support of π (a closed set). Pick any (x0, y0) ∈ Γ,and

define

ψ(x) := inf
e∈E

sup
m∈N

sup{
[
es∗ds∗(x

0, y0)− es∗ds∗(x
1, y0)

]
+
[
es∗ds∗(x

1, y1)− es∗ds∗(x
2, y1)

]
+

...+ [es∗ds∗(x
m, ym)− es∗ds∗(x, y

m)]); (x1, y1), ..., (xm, ym) ∈ Γ} (5.14)

By applying the definition with m = 1 and (x1, y1) = (x0, y0) , one immediately

sees that ψ(x0) ≥ 0. On the other hand, ψ(x0) is the supremum of all the quantities

infe∈E{[es∗ds∗(x0, y0)− es∗ds∗(x
1, y0)] + ...+ [es∗ds∗(x

m, ym)− es∗ds∗(x
0, ym)]} which by

cyclical monotonicity are all non-positive. So actually ψ(x0) = 0.
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By renaming ym as y, obviously

ψ(x) = sup
y∈X

inf
e∈E

sup
m∈N

sup
(x1,y1),...,(xm−1,ym−1),xm

{
[
es∗ds∗(x

0, y0)− es∗ds∗(x
1, y0)

]
+
[
es∗ds∗(x

1, y1)− es∗ds∗(x
2, y1)

]
+

...+ [es∗ds∗(x
m, y)− es∗ds∗(x, y)]);

(
x1, y1

)
, ..., (xm, y) ∈ Γ} (5.15)

So ψ(x) = infe∈E supy [ζ(y)− es∗ds∗(x, y)] , if ζ is defined by

ζ(y) = sup{
[
e∗s∗ds∗(x

0, y0)− e∗s∗ds∗(x
1, y0)

]
+
[
e∗s∗ds∗(x

1, y1)− e∗s∗ds∗(x
2, y1)

]
+

...+ e∗s∗ds∗(x
m, y));m ∈ N,

(
x1, y1

)
, ..., (xm, y) ∈ Γ} (5.16)

(with the convention that ζ = −∞ out of projX (Γ)). Thus ψ is a esds−convex

function.

Now let (x̄, ȳ) ∈ Γ. By choosing xm = x̄, ym = ȳ in the definition of ψ,

ψ(x) ≥ inf
e∈E

sup
m

sup
(x1,y1),...,(xm−1,ym−1)

{
[
es∗ds∗(x

0, y0)− es∗ds∗(x
1, y0)

]
+

· · ·+
[
es∗ds∗

(
xm−1, ym−1

)
− es∗ds∗

(
x̄, ym−1

)]
+ [es∗ds∗ (x̄, ȳ)− es∗ds∗ (x, ȳ)]}.

In the definition of ψ, it does not matter whether one takes the supremum over

m− 1 or over m variables, since one also takes the supremum over m. So the Previous

inequality can be recast as

ψ(x) ≥ ψ(x̄) + e∗s∗ds∗(x̄, ȳ)− e∗s∗ds∗(x, ȳ).

In particular, ψ(x) + e∗s∗ds∗(x, ȳ) ≥ ψ(x̄) + e∗s∗ds∗(x̄, ȳ). As was proved in Lemma 4
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this can be extended to the sum over s ∈ S;

ψ(x) +
∑
s∈S

e∗sds∗(x, ȳ) ≥ ψ(x̄) +
∑
s∈S

e∗sds∗(x̄, ȳ)

Taking the infimum over x ∈ X in the left-hand side, we deduce that

ψesds(ȳ) ≥ ψ(x̄) +
∑
s∈S

e∗sds∗(x̄, ȳ).

Since the reverse inequality is always satisfied, actually

ψesds(ȳ) = ψ(x̄) +
∑
s∈S

e∗sds∗(x̄, ȳ),

and this means precisely that (x̄, ȳ) ∈ ∂esdsψ. So Γ does lie in the esds−sub-differential

of ψ.

Step 4: There is duality.

Let ||ds∗|| := sup(x,y)∈X×X e
∗
s∗ds∗ . By steps two and three, there exists a transmission

method π whose support is included in ∂esdsψ for some esds−convex ψ, and which was

constructed “explicitly” in Step three. Let ϕ = ψesds .

From equation (5.14), ψ = supψm, where each ψm is a supremum of continuous

functions, and therefore lower semi-continuous. In particular, ψ is measurable. The

same is true of ϕ.

Next we check that ψ, ϕ are bounded. Let (x0, y0) ∈ ∂esdsψ be such that ψ(x0) <

+∞; then consequently ϕ(y0) > −∞. So, for any x ∈ X ,

ψ(x) = inf
e∈E

sup
y

[ϕ(y)− es∗ds∗(x, y)] ≥ ϕ(y0)− e∗s∗ds∗(x, y
0) ≥ ϕ(y0)− ||ds∗||;

ϕ(y) = inf
e∈E

inf
x
[ϕ(x) + es∗ds∗(xs∗ , ys∗)] ≤ ψ(x0) + e∗s∗ds∗(x

0
s∗ , ys∗) ≤ ψ(x0) + ||ds∗||.
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Re-injecting these bounds into the identities ψ = ϕesds , ϕ = ψesds and applying

Proposition 44, we get

ψ(x) ≤ sup
y
ϕ(y) ≤ ψ(x0) + ||ds||;

ϕ(y) ≥ inf
x
ψ(x) ≥ ϕ(y0)− ||ds||.

So both ψ and ϕ are bounded from above and below.

Thus we can integrate ϕ, ψ against µ, ν respectively, and, by the marginal condition,

∫
ϕ(y)dν(y)−

∫
ψ(x)dµ(x) =

∫
[ϕ(y)− ψ(x)] dπ(x, y).

Since ϕ(y)− ψ(x) =
∑

s e
∗
sds∗(x, y) on the support of π, we may write

∫
ϕ(y)dν(y)−

∫
ψ(x)dµ(x) =

∫ ∑
s

e∗sds∗(x, y)dπ(x, y).

It was shown in remark 43 on page 31 that ϕ = ψc = ψ, so we can write

∫
ψ(y)dν(y)−

∫
ψ(x)dµ(x) =

∫ ∑
s

e∗sds∗(x, y)dπ(x, y).

This proves the duality.

Step 5: If ds(x, y) ≤ fs(x) + gs(y) then (ψ, ϕ) solves the dual problem.

The idea in this step is to prove that ψ and ϕ are integrable. The estimates in this

step are similar to that of step 4, the difference being that we fix (x0, y0) such that
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ϕ(y0), ψ(x0), fs(x
0) and gs(y

0) are finite, and write

ψ(x) + fs∗(x) = inf
e∈E

sup
y
[ϕ(y)− es∗ds∗(x, y) + fs∗(x)]

≥ sup
y
[ϕ(y)− gs∗(y)]

≥ ϕ(y0)− gs∗(y
0)

and;

ψ(x)− gs∗(y) = sup
e∈E

inf
x
[ψ(x) + e∗s∗ds∗(x, y)− gs∗(y)]

≥ inf
x
[ψ(x) + fs∗(x)]

≥ ϕ(x0) + fs∗(x
0).

So ψ is bounded below by the µ−integrable function ϕ(y0) − gs∗(y
0) − fs∗ and

ϕ is bounded above by the ν−integrable function ψ(x0) + fs∗(x
0) + gs∗ ; hence both∫

ψdµ and
∫
ϕdν make sense in R ∪ {−∞}. Further, both integrals are finite since∫

(ϕ− ψ)dπ =
∫
e∗s∗ds∗dπ > −∞, and so

∫
e∗s∗ds∗dπ =

∫
ϕdν −

∫
ψdµ.

Hence, as a result of step 4 we can conclude that both π and (ψ, ϕ) are optimal in

the primal and dual problems, respectively.

To prove the last part of the theorem, first note that ds is continuous, so the sub-

differential of any esds−convex function is a closed (S, esds)−cyclically monotone set.

Let π be an arbitrary optimal transmission method, and (ψ, ϕ) and an optimal
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coding strategy. we know that (ψ, ψesds) is optimal in the dual problem, so

∫
e∗s∗ds∗dπ =

∫
ψesdsdν −

∫
ψdµ.

Now, by the marginal condition we may rewrite this as

∫
ψesds − ψ − e∗s∗ds∗dπ = 0,

and by remark 43 on page 31 we can write,

∫
ψ(y)− ψ(x)− e∗s∗ds∗dπ = 0

We know the integrand is non-negative so π must be concentrated on the pairs (x, y)

for which

ψ(y)− ψ(x)− e∗s∗ds∗(x, y) = 0.

But this is the sub-differential of ψ, so since π and ψ are arbitrary, any optimal plan

must be concentrated on the sub-differential of any optimal ψ. Thus, if Γ is defined as

the intersection of all sub-differentials of optimal functions ψ, then Γ also contains the

support of of all optimal plans.

For the converse, consider an arbitrary transfer plan π̃ ∈ Π(µ, ν) concentrated on

Γ,then

∫
e∗s∗ds∗dπ̃ =

∫ [
ψesds − ψ

]
dπ̃

=

∫
ψesdsdν −

∫
ψdµ.

So π̃ is optimal. Similarly, if ψ̃ is a esds−convex function such that ∂esdsψ̃ contains Γ,

then by the previous estimates ψ̃ and ˜ψesds are integrable against µ and ν respectively,
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and

∫
e∗s∗ds∗dπ =

∫ [
ψ̃esds − ψ̃

]
dπ

=

∫
ψ̃esdsdν −

∫
ψ̃dµ

=

∫
ψ̃(y)dν −

∫
ψ̃(x)dµ

We may conclude that ψ̃(x) is optimal.

5.6 Some Equivalent Statements About Optimal Transmission

Methods.

The proof of the duality in the previous section would work just as well if ds were

merely a semi-metric on Xs, i.e. a function with all the properties of a metric but not

necessarily the triangle inequality. However, in that case Steif’s metric is no longer a

metric7 but a semi-metric. Regardless, in the next theorem that is all that is assumed.

Theorem 46. If ds is a real valued semi-metric on Xs for all s ∈ S and d̄(µ, ν) =

infπ∈Π(µ,ν) sups∈S
∫
dsdπ is finite, then there is a closed measurable (S, esds)−cyclically

monotone set Γ ⊂ X × X such that for any π ∈ Π(µ, ν) the following five statements

are equivalent:

1. π is optimal

2. π is (S, esds)−cyclically monotone;

3. There is a esds−convex ψ such that, π−almost surely ψesds(y)−ψ(x) =
∑

s e
∗
sds∗;

4. There exist ψ : X → R∪{+∞} and ϕ : X → R∪ {−∞}, such that ϕ(y)−ψ(x) ≤∑
s e

∗
sds∗ for all (x, y), with equality π−almost surely;

7Which is equally true of the 1-Wassertstein distance, but the Kantorovich duality holds either way.
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5. π is concentrated on Γ

Proof. Firstly assume d̄(µ, ν) is finite and ∀s ∈ S, ds ∈ R. We establish the truth of

the above claim via the following sequence of implications

(1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1) =⇒ (5) =⇒ (2).

The implication (1) =⇒ (3) must be done before (1) =⇒ (5) as the former is

used in the proof of the latter.

Setup: By step 4 of the proof of theorem 45 we can find (πk, ϕk, ψk, (ds∗)k)k∈N such

that ψk is bounded and esds−convex, ϕk = (ψk)
c, and

∫
(e∗s∗ds∗)kdπk(x, y) =

∫
ϕk(y)dν(y)−

∫
ψk(x)dµ(x). (5.17)

(1) =⇒ (2): Since the optimal transmission error is finite by assumption, the cost

function e∗s∗ds∗ belongs to L1(π). From (5.17) and the marginal property of π,

∫
[e∗s∗ds∗(x, y)− ϕk(y) + ψk(x)] dπ(x, y) −→

k→∞
0,

so e∗s∗ds∗(x, y)− ϕk(y) + ψk(x) converges to 0 in L1(π) as k → ∞. We may assume

that up to a subsequence

ϕk(yi)− ψk(xi) −→
k→∞

e∗s∗ds∗(xi, yi) π(dxi, dyi)− a.s
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By passing to the limit in the inequality

M∑
i=1

e∗s∗ds∗(xi, yi+1) ≥
M∑
i=1

[ϕk(yi+1)− ψk(xi)]

=
M∑
i=1

[ϕk(yi)− ψk(xi)]

(where by convention yM+1 = y1)we see that, π⊗M − a.s

M∑
i=1

e∗s∗ds∗(xi, yi+1) ≥
M∑
i=1

e∗s∗ds∗(xi, yi).

At this point we know that π⊗M is concentrated on some set ΓM ⊂ (X × X )M , such

that ΓM consists ofM−tuples ((x1, y1), ..., (xM , yM)) satisfying (5.2). Let projk((xi, yi)1≤i≤M) :=

(xk, yk) be the projection onto the kth factor of (X × X)M . One can check that Γ :=

∩1≤k≤Mproj k(ΓM) is a (S, esds)−cyclically monotone set which has full π−measure; so

π is indeed (S, esds)−cyclically monotone.

(2) =⇒ (3) : Let π be a cyclically monotone transmission method. The function

ψ can be constructed just as in Step 3 of the proof of duality - but with some key

differences. First, Γ is not necessarily closed; it is just a Borel set such that π[Γ] = 1.

(If it is not Borel we can make it Borel by modifying on a negligible set.) Now define

as in step 3 of the proof of theorem 45,

ψ(x) := inf
e∈E

sup
m∈N

sup{
[
es∗ds∗(x

0, y0)− es∗ds∗(x
1, y0)

]
+
[
es∗ds∗(x

1, y1)− es∗ds∗(x
2, y1)

]
+

· · ·+ [es∗ds∗(x
m, ym)− es∗ds∗(x, y

m)] ;
(
x0, y0

)
, . . . , (xm, ym) ∈ Γ}.

From its definition, for any x ∈ X ,

ψ(x) ≥ e∗s∗ds∗(x
0, y0)− e∗s∗ds∗(x, y

0) > −∞.
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Then we proceed just as in step 3, showing that ψ(x0) = 0, ψ is esds−convex and π

is concentrated on ∂esdsψ.

(3) =⇒ (4) : Just let ϕ = ψesds .

(4) =⇒ (1) : Let (ψ, ϕ) be a pair of admissible functions, and let π be a transmission

method such that ϕ − ψ =
∑

s∈S e
∗
sds∗ , π−almost surely. The goal is to show that π

is optimal. The main difficulty lies in the fact that ψ and ϕ need not be separately

integrable. This problem will be circumvented by a careful truncation procedure. For

n ∈ N, w ∈ R≥0 ∪ {+∞}, define

Tn(w) =


w if w ≤ n

n if w > n,

and

ξ(x, y) := ϕ(y)− ψ(x); ξn(x, y) := Tn(ϕ(y))− Tn(ψ(x)).

In particular, ξ0 = 0. It is easily checked that ξn converges monotonically to ξ; more

precisely,

• ξn(x, y) remains equal to 0 if ξ(x, y) = 0;

• ξn(x, y) increases to ξ(x, y) if the latter quantity is positive;

As a consequence, ξn ≤ (ξn)+ ≤ ξ+ ≤
∑

s∈S e
∗
sds∗ . So (Tnϕ, Tnψ) is a plausible strategy

in the dual problem, and

∫
ξndπ =

∫
(Tnϕ)dν −

∫
(Tnψ)dµ ≤ sup

ϕ′−ψ′≤esds

(∫
ϕ′dµ−

∫
ψ′dν

)
. (5.18)

On the other hand, by monotone convergence and since ξ coincides with outside of
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a π−negligible set,

∫
ξ≥0

ξndπ −→
n→∞

∫
ξ≥0

ξdπ =

∫ ∑
s∈S

e∗sds∗dπ;

This and (5.18) imply that

∫ ∑
s∈S

e∗sds∗dπ ≤ sup
ϕ′−ψ′≤esds

(∫
ϕ′dµ−

∫
ψ′dν

)
;

So π is optimal. Before completing the chain of equivalences, we should first con-

struct the set Γ. By theorem 4.1 there is at least one optimal transmission method, say

π̃. By the implication (1) =⇒ (3), there is some ψ̃ such that π̃ is concentrated on

∂esdsψ̃; just choose Γ := ∂esdsψ̃.

(1) =⇒ (5) : Let π̃ be the optimal plan used to construct Γ, and let ψ = ψ̃ be

associated esds−convex function; let ϕ = ψc. Then let π be another optimal plan. Since

π and π̃ have the same cost and same marginals,

∫ ∑
s∈S

e∗sds∗dπ =

∫ ∑
s∈S

e∗sds∗dπ̃ = lim
n→∞

∫
(Tnϕ− Tnψ)dπ̃

= lim
n→∞

∫
(Tnϕ− Tnψ)dπ,

where Tn is the truncation operator that was used in the proof of (4) =⇒ (1). So

∫ [∑
s∈S

e∗sds∗(x, y)− Tnϕ(y) + Tnψ(x)

]
dπ(x, y) −→

n→∞
0. (5.19)

As before, define ξ(x, y) := ϕ(y)− ψ(x); then by monotone convergence,

∫
ξ≥0

[∑
s∈S

e∗sds∗ − Tnϕ+ Tnψ

]
dπ −→

n→∞

∫
ξ≥0

(
∑
s∈S

e∗sds∗ − ξ)dπ.

49



Since ξ ≤
∑

s∈S e
∗
sds∗ , the integrands here are nonnegative and both integrals make

sense in [0,+∞]. So by adding the two limits and using (5.19) we get

∫
(
∑
s∈S

e∗sds∗ − ξ)dπ = lim
n→∞

∫ [∑
s∈S

e∗sds∗ − Tnϕ+ Tnψ

]
= 0.

Since ξ ≤
∑

s∈S e
∗
sds∗ , this proves that

∑
s∈S e

∗
sds∗ coincides π−almost surely with

ξ, which was the desired conclusion.

(5) =⇒ (2) : This is obvious since Γ is cyclically monotone by assumption.

6 Conclusion

In this dissertation I have proven the equality of two metrics, extending on work by

R.S. MacKay et al in (MacKay & Diakonova, 2011), (MacKay, 2011) and (MacKay,

2019). The proof was adapted from that of the Kantorovich duality in (Villani, 2009).

I hope that the result will be useful in the classification of complex systems in terms of

the parameters corresponding to their metastable states. It remains quite difficult to

actually calculate the distances on complex systems. To this end I think the place to

start is with algorithms for calculating maximal multi-commodity flows, for example in

(Williamson, 2019).

7 Bibliographic Notes

The section I wrote to provide context was made up of three sections. The part on

IPS was taken from the introduction in (Ligget, 2005) and (Toom et. al., 1990). The

description of PCA was mainly based on (Toom et. al., 1990) and (Pierre-Yves, Nardi

and Fernandez, 2018). Finally the subsection on complexity and emergence was based

on (Hoekstra, Kroc and Sloot, 2013) along with (MacKay & Diakonova, 2011). the
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latter being primarily for information on emergence and the former on complexity.

In the next section the mathematical description of PCA is taken from (Pierre-

Yves, Nardi and Fernandez, 2018) and the NEC voter model PCA is as described in

(MacKay & Diakonova, 2011). Remark 10, which describes the product σ−algebra

is from (Folland, 2009) while Dobrushin’s metric was introduced by R. MacKay in

(MacKay, 2011). Steif’s metric is an extension by R. MacKay in (MacKay, 2018) of

a metric introduced by Steif in (Steif, 1988) and (Steif, 1991). The calculation of

Dobrushin’s metric is from (MacKay & Diakonova, 2011).

All of section four is from chapter 5 of (Villani, 2009).

In section six I follow Villani’s proofs quite closely, I had to include Theorem 29

from (Cohn, 1980) to ensure certain parts worked. Proving that the optimal coupling

was a fairly trivial extension of proofs in (Villani, 2009). The definition I supply of

cyclical monotonicity is a non-trivial extension of the one Villani provides as is the

definition esds−convexity. Lemma 36 is the combination of a proof sketched for me by

Robert MacKay in a meeting in semester 2 of 2019/2020 and a proof in (Follmer &

Horst, 2001). The illustration of the optimisation problem based on information theory

is mine, but it was inspired by applications discussed in (Dobrushin, 1972). The proof

of the duality follows Villani’s proof of the Kantorovich duality in (Villani, 2009) but

uses the extended definitions I introduced. The first three steps in particular required

significant extensions, much of the rest however seemed to follow naturally after that.

Finally the proof, in the appendix, that Steif’s metric is complete on P(X ) is based

on the one in (Steif, 1988). I had to extend it slightly, especially Lemma 51 on page 54

which I had to extend from {0, 1} to all compact Polish spaces.
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8 Appendix

8.1 d̄(µ, ν) is a complete metric on P(X ).

Remark 47 (Notation). Denote by ∆ the symmetric difference of two sets i.e. the set

of elements which are in the union of the sets but not in their intersection.

Proposition 48. d̄(µ, ν) is a metric

To prove proposition 48 we will need the gluing lemma. For a proof one can consult

(Dudley, 1999; Theorem 1.1.10), but the proof goes too far off track, involves stochastic

processes and requires new definitions not really relevant to anything else I discuss.

Lemma 49. Let (Xi, µi), i = 1, 2, 3, be Polish probability spaces. If (X1, X2) is a

coupling of (µ1, µ2) and (X2, X3) is a coupling of (µ2, µ3), then one can construct a

triple of random variables (Z1, Z2, Z3) such that (Z1, Z2) has the same law as (X1, X2)

and (Z2, Z3) has the same law as (X2, X3).

Proof of proposition. We must prove symmetry (1), identity of indiscernible (2) and

the triangle inequality (3).

1. Symmetry is obvious

2. If d̄(µ, ν) = 0 then for all s ∈ S we have
∫
Xs×Xs ds(xs, ys)dπ

∗ = 0 which implies

that x = y π∗ − a.s so Pπ∗
(x = y) = 1 which implies that µ = ν. Conversely if

µ = ν we can trivially couple them with the identity map, then x = y π−a.s and

hence d̄(µ, ν) = 0.

3. Let (Xi, µi), i = 1, 2, 3, be Polish probability spaces. LetX1, X2, X3 and (Z1, Z2, Z3)

be as in Lemma 49. Choose Law(X1, X2) = π1 such that

sup
s∈S

∫
X1×X2

ds(x, y)dπ1 ≤ d̄(µ1, µ2) + ϵ
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and likewise choose Law(X2, X3) = π2 such that

sup
s∈S

∫
X2×X3

ds(x, y)dπ2 ≤ d̄(µ2, µ3) + ϵ.

By Lemma 49 we can choose a measure π̃ on X1×X2×X3 whose projection onto

the first two factors is π1 and whose projection onto the second two factors is π2.

Let π3 be the projection of π̃ onto the first and third factors then π3 is a (µ1, µ3)

coupling and

∫
X1×X3

ds(x, z)dπ3 =

∫
X1×X2×X3

ds(x, z)dπ̃

≤
∫
X1×X2×X3

ds(x, y) + ds(y, z)dπ̃

≤
∫
X1×X2×X3

ds(x, y)dπ̃ +

∫
X1×X2×X3

ds(y, z)dπ̃

=

∫
X1×X2

ds(x, y)dπ1 +

∫
X2×X3

ds(y, z)dπ2

Let X1 = X2 = X3 then we have

d̄(µ1, µ3) = sup
s∈S

∫
X×X

ds(x, z)dπ3

≤ sup
s∈S

(∫
X×X

ds(x, y)dπ1 +

∫
X×X

ds(y, z)dπ2

)
≤ sup

s∈S

∫
X×X

ds(x, y)dπ1 + sup
s∈S

∫
X×X

xsds(y, z)dπ2

= d̄(µ1, µ2) + d̄(µ2, µ3) + 2ϵ.

Since ϵ can be taken to be arbitrarily small this gives the result.

Proposition 50. d̄(µ, ν) is complete.
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Before proving Proposition 28 we need the following Lemma.

Lemma 51. There exists a metric ρ on P(X ) such that ρ ≤ d̄ and the topology induced

from ρ is the weak∗ topology on P(X ).

Proof. Let S = {s1, s2, . . . } and let (Xs, ds) be compact and Polish. Let σ(s1, . . . , sN)

be the sub σ−field of X generated by the coordinates {s1, . . . , sN}. Now define ρ in the

following way

ρ(µ, ν) =
∞∑
i=1

1

i(2K)i

∑
F∈A(σ(s1,...,si))

|µ(F )− ν(F )|.

Where A(σ(s1, ..., si)) is the collection of subsets corresponding to the sub σ−field

σ(s1, ..., si). By Tychnoff’s theorem X is compact and every open covering of X has

a finite subcover. This implies that the Borel σ−algebra σ(X ) is finite. Hence, the

second sum is finite since the cardinality of A is finite. If sups |σ(Xs)| = K then the

second term is bounded above by Ki. It’s obvious that ρ is a metric, we prove now

that ρ corresponds to the weak∗ topology. Assume that µn −→
w∗

µ. Let ϵ > 0 be given

and choose M so that
∞∑

i=M+1

1

i2i
≤ ϵ

2
.

Next, choose N such that for all n ≥ N , µn and µ agree to within ϵ
2

on all sets in

the σ−field generated by {s1, ..., sM}. Then if n ≥ N

ρ(µn, µ) =
M∑
i=1

1

i(2K)i

∑
F∈A(σ(s1,...si))

|µn(F )− µ(F )|+
∞∑

i=1+M

1

i(2K)i

∑
F∈A(σ(s1,...si))

|µn(F )− µ(F )|

≤
M∑
i=1

1

i2i
ϵ

2
+

∞∑
i=M+1

1

i2i

< ϵ
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so µn →
ρ
µ.

Conversely, assume µn →
ρ
µ . Let F be an arbitrary element of the Borel σ−algebra.

Then

F ∈ A(σ(si, ..., si))

for some i sufficiently large. Choose N sufficiently large so that for all n ≥ N,

ρ(µn, µ) <
ϵ

i(2K)i
. Then for all n ≥ N,

|µn(F )− µ(F )|
i(2K)i

≤ ρ(µn, µ) ≤
ϵ

i(2K)i

and so |µ(F )−µn(F )| ≤ ϵ and µn →
w∗
µ.Hence the weak topology and the weak∗−topology

coincide. We need to show that ρ ≤ d̄. Let π be an arbitrary µ, ν coupling. It suffices

to show that ρ(µ, ν) ≤ sups
∫
ds(x, y)dπ.

ρ(µ, ν) =
∞∑
i=1

1

i(2K)i

∑
F∈A(σ(s1,...,si))

|
∫
F

fdµ−
∫
F

fdν|

=
∞∑
i=1

1

i(2K)i

∑
F∈A(σ(s1,...,si))

|
∫
F×X

ds(x, y)dπ −
∫
X×F

ds(x, y)dπ|

≤
∞∑
i=1

1

i(2K)i

∑
F∈A(σ(s1,...,si))

∫
(F×X )∆(X×F )

ds(x, y)dπ

≤
∞∑
i=1

1

i(2K)i

∑
F∈A(σ(s1,...,si))

i∑
j=1

∫
X×X

ds(x, y)dπ

≤
∞∑
i=1

1

2i

∫
X×X

ds(x, y)dπ

=

∫
X×X

ds(x, y)dπ

≤ sup
s∈S

∫
X×X

ds(x, y)dπ

as required.
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Proof of Proposition 28. Let {µn}n∈N be a d̄−Cauchy sequence. By the previous lemma

it is also ρ−Cauchy and hence converges weakly to some µ. We show that µn −→̄
d

µ.

To do this consider a coupling of µn and µm, say πn,m, such that

sup
s

∫
ds(x, y)dπn,m ≤ 2d̄(µn, µm).

We can use a standard diagonalization argument and the weak∗ compactness of the

collection of probability measures (since X × X is compact) we can choose mk → ∞

such that, for all n

πn,mk −→
w∗

πn ∈ P(X × X ), k → ∞.

This is a coupling of µn, µ and we now want to show that these {πn}n∈N yield good

µn, µ couplings.

Let ϵ > 0 and choose N such that ∀n,m ≥ N, d̄(µn, µm) ≤ ϵ. Now, if n,mk ≥ N

and s ∈ S,

∫
ds(x, y)dπn,mk ≤ sup

s

∫
ds(x, y)dπn,mk

≤ 2d̄(µn, µmk)

< 2ϵ.

Letting k → ∞ together with πn,mk −→
w∗

πn and compactness of X ×X we get that

sup
s

∫
ds(x, y)dπn ≤ 2ϵ

and we can conclude that d̄(µn, µ) ≤ 2ϵ if n ≥ N and so µn −→̄
d
µ as required.

56



References

[1] Cohn, Donald. L. “Chapter 8: Polish Spaces and Analytic Sets.” In Measure Theory

.., 251–54. Berlin: Springer, 1980.

[2] Diakonova, M., and R. S. Mackay. “Mathematical Examples Of Space-Time

Phases.” International Journal of Bifurcation and Chaos 21, no. 08 (2011): 2297–

2304. https://doi.org/10.1142/s0218127411029793.

[2] Dobrushin, R. L., Kri�u�kov V. I., A. L. Toom, N. B. Vasilyev, O. N. Stavskaya, L. G.

Mityushin, G. L. Kurdyumov, and S. A. Pirogov. “Part 1: Discrete Local Markov

Systems.” In Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis,

1–33. Manchester: Manchester University Press, 1990.

[3] Dobrushin, R. “Survey of Soviet Research in Information Theory.” IEEE

Transactions on Information Theory 18, no. 6 (1972): 703–24. ht-

tps://doi.org/10.1109/tit.1972.1054923.

[4] Dudley, R. M. “1.1 Empirical Processes: the Classical Case.” Essay. In Uniform

Central Limit Theorems, 7–9. Cambridge: Cambridge University Press, 1999.

[5] Dudley, R. M. “Chapter 11: Convergence Laws on Separable Metric Spaces .” Es-

say. In Real Analysis and Probability, 399–405. Cambridge: Cambridge University

Press, 2002.

[6] Folland, Gerald B. “Chapter 2: Measure and Integration - A General Theory.”

Essay. In A Guide to Advanced Real Analysis, 21–40. Washington, D.C.: Math-

ematical Association of America, 2009.

57



[7] Föllmer, Hans, and Ulrich . “Convergence of Locally and Globally Interacting

Markov Chains.” Stochastic Processes and their Applications 96, no. 1 (2001):

99–121. https://doi.org/10.1016/s0304-4149(01)00110-7.

[8] Hoekstra, Alfons G., Jiri Kroc, and Peter M. A. Sloot. “Chapter 1: Introduction to

Modelling of Complex Systems Using Cellular Automata.” In Simulating Complex

Systems by Cellular Automata, 1–16. Berlin: Springer Berlin, 2013.

[9] Liggett, T.M. Interacting Particle Systems. Berlin: Springer, 2005.

[10] Louis, Pierre-Yves, Francesca R. Nardi, and Roberto . “Chapter 1: Overview - PCA

Models and Issues .” In Probabilistic Cellular Automata: Theory, Applications and

Future Perspectives, 1–30. Cham, Switzerland: Springer, 2018.

[11] Mackay, R S. “Management of Complex Dynamical Systems.” Nonlinearity 31, no.

2 (2018). https://doi.org/10.1088/1361-6544/aa952d.

[12] Mackay, R. S. “Robustness of Markov Processes on Large Networks.” Journal

of Difference Equations and Applications 17, no. 8 (2011): 1155–67. ht-

tps://doi.org/10.1080/10236190902976889.

[13] Maes, Christian. “Coupling Interacting Particle Systems.” Re-

views in Mathematical Physics 05, no. 03 (1993): 457–75. ht-

tps://doi.org/10.1142/s0129055x93000139.

[14] Steif, Jeffrey E. “Convergence to Equilibrium and Space—Time Bernoullicity for

Spin Systems in the M< ϵ Case.” Ergodic Theory and Dynamical Systems 11, no.

3 (1991): 547–75. https://doi.org/10.1017/s0143385700006337.

[15] Steif, Jeffrey E. “The Ergodic Structure of Interacting Particle Systems,” 1988.

58



[16] Tsetlin, M L. “Finite Automata And Models Of Simple Forms Of Be-

haviour.” Russian Mathematical Surveys 18, no. 4 (1963): 1–27. ht-

tps://doi.org/10.1070/rm1963v018n04abeh001139.

[17] Villani Cédric. “Chapters 1-6.” In Optimal Transport: Old and New, 1–113. Berlin:

Springer, 2009.

[18] Williamson, David P. “Chapter 7: Multicommodity Flow Algorithms.” In Network

Flow Algorithms. Cambridge: Cambridge University Press, 2019.

59


